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A new momentum impulse relaxation method for obtaining the shear viscosity of Newtonian fluids
using molecular dynamics simulations is introduced. The method involves the resolution of a
decaying coarse-grain Gaussian velocity profile in a properly thermostated simulation box. This
localized velocity profile, along with a modification of the periodic boundary conditions, allows
computations in a periodic box with minimal phonon feedback due to periodicity. The short-time
decay of the small-amplitude velocity profile yields shear viscosities for atomic and molecular
species that are in quantitative agreement with those obtained using conventional techniques, but
with more than an order of magnitude reduction in computational effort. ©2000 American
Institute of Physics.@S0021-9606~00!51130-1#

I. INTRODUCTION

Several molecular dynamics methods have been devel-
oped over the years to estimate the macroscopic transport
properties of fluids. The calculation of one of these proper-
ties, the shear viscosity, is of considerable practical interest.
The molecular dynamics methods for calculating the shear
viscosity fall into one of two main categories: equilibrium
molecular dynamics~EMD! or nonequilibrium molecular dy-
namics~NEMD! techniques. The EMD techniques involve
either the calculation of time correlation functions by mea-
suring the decay of near-equilibrium fluctuations in proper-
ties of the fluid~Green–Kubo methods! or by accumulating
displacements in properties over time~Einstein methods!.
The Green–Kubo relation1,2 for shear viscosity,h, is given
by
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where^¯& denotes the ensemble average,V is the volume,
kB is the Boltzmann’s constant,T is the temperature,t is the
time andPxz is the xz component of the pressure tensorP
given by
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where pi is the momentum vector for moleculei, r i j

5r i2r j is the vector joining the centers of moleculesi andj,
andFi j is the force between them. The above expression is
known as the ‘‘molecular’’ virial, since the sum is over all
the molecules,N. The shear viscosity can also be calculated
from the ‘‘atomic’’ virial which is of similar form, except
that the summation is over individual atomic species rather
than molecules.

A weakness of both the EMD methods is that the shear
viscosity suffers from substantial nonmonotonic system size

dependence.3,4 Another drawback is that the autocorrelation
function in the Green–Kubo expression decays with long-
time tails5 (;t23/2 as t→`). Therefore, the integration in
Eq. ~1! when truncated at a finitet5t run contains truncation
errors6,7 given by

s5S 2t

t run
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, ~3!

wheres is the uncertainty in the value of the viscosity, and
t is the relaxation time of the molecules. This means that
prohibitively long EMD simulations have to be run for mol-
ecules with long relaxation times to achieve acceptable lev-
els of error.

The NEMD techniques usually involve measuring the
macroscopic steady-state response of the system to a perturb-
ing field and relating the linear response to a transport coef-
ficient. One of the earliest NEMD techniques, which main-
tains conventional periodic boundary conditions, involves
imposing a spatially periodic external force on the molecules
to generate an oscillatory velocity profile.8 The amplitude of
this velocity profile at steady state is inversely related to the
shear viscosity, and hence the viscosity can be calculated.
The shear viscosity is wavelength dependent, however, and
the Newtonian shear viscosity is obtained only in the long
wavelength limit, i.e., in the limitk→0, wherek is the wave
vector of the oscillatory perturbation. This means that a very
large simulation box is required to get reasonably accurate
values of shear viscosity, which limits the usefulness of this
technique. The reason for this box-size dependent viscosity
is that the periodic boundary conditions allow acoustic
modes~phonons! to propagate persistent fluctuations around
the box due to periodic feedback.

The more successful NEMD techniques involve impos-
ing a planar Couette flow velocity profile~i.e., zero wave
vector techniques!. One of the most efficient NEMD algo-
rithms for shear viscosity is the Sllod algorithm.7,9 The Sllod
algorithm has been used by several authors, and has been
shown to be exact for arbitrarily large shear ratesġ, and isa!Electronic mail: ed@nd.edu
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therefore appropriate for studying non-Newtonian regimes.
The modified equations of motion for the Sllod algorithm are
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whereFi is the force on moleculei, a is the thermostating
multiplier, u5(uix,0,0), anduix5ġr iz , wherez is the direc-
tion normal to the flow andx is the direction of flow. The
Sllod algorithm is combined with the Lees–Edwards ‘‘slid-
ing brick’’ periodic boundary conditions.10 The strain rate
dependent shear viscosity is obtained from the constitutive
equation

h~ġ!5
2^Pxz&

ġ
. ~6!

The Newtonian shear viscosity is estimated by extrapo-
lating the shear viscosities to zero shear rate. Both EMD and
NEMD methods give similar values for the Newtonian shear
viscosities, however, an advantage of this NEMD method is
that the shear rate dependence of the viscosity is obtained
directly from NEMD, while EMD provides the zero shear
rate value only. One of the drawbacks of this NEMD method
is that there is no generally accepted theoretical model for
the shear rate dependence of the shear viscosity. The result-
ing Newtonian viscosity obtained from an NEMD simulation
depends on the model used in the extrapolation procedure.
To overcome this limitation, NEMD simulations at very
small shear rates may be performed. However, this defeats
the purpose of the NEMD method since these low shear rate
simulations require nearly as much computation time as the
EMD methods. Though the NEMD runs can be parallelized
for different shear rates, the computational time required to
obtain the viscosity is limited by these long simulation runs
at low shear rates. Although refinements to the traditional
NEMD methods are being developed which reduce the com-
putational cost by improving the signal-to-noise ratio at
small fields,11,12 viscosity calculation is still quite demand-
ing.

In brief, the existing molecular dynamics~MD! methods
for estimating the shear viscosity of fluids require long simu-
lation times. For systems composed of big molecules, these
simulations become prohibitively long, and therefore faster
ways of obtaining the viscosity of fluids are required. In the
present article, we present a novel technique for calculating
Newtonian shear viscosities with significantly less computa-
tional effort than standard methods. This involves a short-
time transient analysis of a Gaussian velocity impulse im-
posed on a periodic box at timet50. A major obstacle in
using periodic simulation boxes for both EMD and NEMD
techniques is the anomalous phonon propagation of momen-
tum through the periodic boundaries. We overcome this ob-
stacle by using an initial coarse-grain velocity impulse much
narrower than the box dimension. If the shear viscosity can
be estimated from the short-time simulation before the relax-
ation reaches the box boundaries, phonon corruption can be

minimized. This is not possible with conventional NEMD
methods, as steady equilibrium necessitates phonon equili-
bration across the periodic boundaries. To this end, we use a
Gaussian profile whose relaxation is concentrated near its
peak, away from the boundaries where phonon corruption
dominates. We also modify periodic boundary conditions in
the direction of momentum transport to better mimic a
Gaussian decay in an infinite domain and to minimize peri-
odic phonon feedback. We exploit the self-similarity of the
Gaussian decay to anticipate the velocity modification at the
boundary without explicit knowledge of the viscosity. As an
application, this method is used to calculate the shear viscos-
ity for argon andn-butane.

II. THEORY

Consider a parallel flow of a Newtonian fluid in thex
direction in an infinite domain, with velocityu(y,t) ex-
pressed as@ux(y,t),0,0# in Cartesian coordinates. From a
macroscopic hydrodynamic standpoint, neglecting effects of
viscous heating, the transient motion of the fluid is deter-
mined by the Navier–Stokes equation, given by

rF ]

]t
1u•¹Gu52¹P1h¹2u1rg, ~7!

wherer is the density of the fluid,P is the pressure,h is the
Newtonian shear viscosity, andg is the external force per
unit mass of the fluid. Assuming that the external force on
the system is zero and that no pressure gradients exist in the
system, Eq.~7! simplifies to the following equation in thex
direction:

]ux~y,t !

]t
5n

]2ux~y,t !

]y2
, ~8!

where n is the kinematic viscosity given byh/r. Let us
impose the condition that at timet50, ux(y,t) is described
by the following Gaussian function:

ux~y,0!5a0e2b0y2
, ~9!

where parametersa0 and b0 are equal to the peak height,
up(0), and theinverse of the variance of the Gaussian func-
tion, s22(0), respectively. This then forms the initial condi-
tion for the partial differential equation given by Eq.~8!.

In an infinite domain without specified length scales and
wall dissipation, this velocity profile will decay with respect
to time as a result ofx-momentum transport along they
direction. The initial Gaussian profile decays in a self-similar
manner such that the profile at every moment is a Gaussian

ux~y,t !5F a0
2

~11t/t0!
G1/2

e2b0y2/(11t/t0), ~10!

where t051/4nb0 . In particular, the peak velocity,up(t),
which is equal toa0 at timet50, decays with respect to time
as

up~ t !5up~0!S 11
t

t0
D 21/2

. ~11!
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Also, the variance of the profile,s2(t), increases linearly
with time as

s2~ t !5s2~0!S 11
t

t0
D . ~12!

Therefore, ifup(t) is plotted as a function of time and fitted
to a function of the formA/(11Bt)1/2 ~whereA and B are
equal toa0 and 1/t0 , respectively!, the shear viscosity can be
obtained from the relation

h5
rB

4b0
. ~13!

Likewise, the shear viscosity could also be estimated by fit-
ting the variance to a linear function in time. The essence of
the algorithm presented here is to conduct a transient mo-
lecular dynamics simulation that satisfies the conditions out-
lined above. The Newtonian viscosity is then extracted from
the decay of the Gaussian peak via Eq.~13!.

III. SIMULATION ALGORITHM

This section describes the MD procedure adopted to
simulate the above infinite system using a finite but periodic
simulation box. We start with an equilibrated system of mol-
ecules in a simulation box centered at the origin, and of
lengthL in the y direction. Standard periodic boundary con-
ditions ~PBC! are applied to the positions of all the mol-
ecules to model an infinite system, and the minimum image
convention is maintained.

To initialize the Gaussianx-component velocity profile,
the hydrodynamic velocity given by Eq.~9! is added to all
the atoms of the molecules att50. For molecular systems,y
is the center of mass of the molecule. A thermostat is used to
keep the temperature at the desired value, where the tempera-
ture is specified in such a way so as to eliminate the contri-
bution made from the mean kinetic energy of the molecules
due to the drift velocity in thex direction. A system with a
decaying velocity profile given by Eq.~10! conserves mo-
mentum in they and z directions, but constantly loses the
x-component of the momentum along they direction. To
model this transient behavior, we utilize standard PBC for
the velocities in thex andz direction, but the velocity in the
y direction is modified to incorporate thisx-momentum
‘‘leak’’ through the top and bottom faces of the simulation
box.

To see how this is done in practice, consider a molecule
leaving the bottom face of the simulation box as shown in
Fig. 1 ~a two-dimensional box is shown here for simplicity!.
According to standard PBC, the image of this molecule
would enter at the top face with the same velocity, thus con-
serving momentum in all directions, which is inconsistent
with an infinite system having a velocity profile given by Eq.
~10!. To model such a system, we force the molecule enter-
ing the box at the top face to have anx-component velocity
consistent with the prevailing Gaussian velocity profile given
by Eq. ~10!. Since the image molecule is farther from the
center of the Gaussian profile than the central molecule the
instant it enters the box, it is given a slightly smaller
x-component velocity according to Eq.~10!. During the

course of the simulation, this modification to the
x-component velocity gives rise to the desired momentum
loss through these two faces. To recap, whenever a molecule
leaves the box through one of thex–z faces, thex velocity of
the mirror molecule is replaced by the extrapolated value of
the Gaussian velocity profile at they coordinate of the mirror
molecule at the time step before it enters the box. The other
two components of the velocity are left unchanged.

To determine this extrapolated value of the Gaussian ve-
locity ~say, at timet), we need to know the Gaussian veloc-
ity profile at this time. In other words, we require the peak
height,up(t), and the variance,s2(t), of the Gaussian ve-
locity profile. For this purpose, the range fromy52L/2 to
y5L/2 is divided intoNb bins, each of widthD5L/Nb , and
having midpointsym , wherem51,2, . . . ,Nb . The basic in-
formation recorded is the averagex-component velocity of
molecules in each of those bins, denoted asvm . The number
of binsNb should be sufficiently large~about 20! to obtain a
satisfactory resolution of the Gaussian. Also, the bins should
have a sufficient number of molecules~about 100! to pro-
duce a well-defined drift velocity in each bin. At each time
step the average velocity in each bin,vm , is calculated and
the resulting velocity profile is fitted to the two-parameter
Gaussian function given by

ux~ t !5up~ t !e2y2/s2(t). ~14!

The two fit parameters,up(t) ands2(t), are then used to
determine the extrapolatedx-component velocity,ux

E(t), of
the image molecule entering the box to replace a molecule
leaving the box through thex–z faces, given by

ux
E~ t !5up~ t !e2y2(t2Dt)/s2(t), ~15!

wherey(t2Dt) is they coordinate of the image molecule at
the time step before it enters the box. The same fit param-
eters are used to determine the peak velocity at each time
step, which is then plotted as a function of time to obtain the
shear viscosity from Eq.~13!. Hence, at no time do we re-
quire the value of shear viscosity to extrapolate the velocity
profile, as the shear viscosity is manifested in the self-similar
decaying nature of the imposed Gaussian velocity profile
given by Eq.~10!. An obvious advantage of this method is
that we do not calculate the stress tensor, which is notori-

FIG. 1. Schematic diagram showing the modification of the periodic bound-
ary condition in they direction in a two-dimensional simulation box.
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ously difficult to compute and fluctuates very rapidly, as in
the case of EMD and NEMD methods. Instead, we evaluate
a less fluctuating and easily computed quantity, the average
velocity in each bin. Figure 2 shows the evolution of the
decaying Gaussian profile with time for the case of argon
with initial parameters ofa05787 ms21 andb054.331017

m22 using the modified periodic boundary conditions.
There are two main limitations of the current method,

both of which stem from the nature of the periodicity im-
posed on the system. First, as with traditional EMD and
NEMD methods, localized acoustic~phonon! fluctuations
can travel back to the central box domain via PBC and am-
plify fluctuations within the box. The current method gener-
ates additional phonon waves due to the modification of ve-
locities that takes place at the system boundaries. The
artificial effects of these anomalous fluctuations are typically
overcome through extrapolation of results using progres-
sively larger simulation boxes. In the current approach, the
phonon wave generated att50 will not return until tph

5L/c, wherec is the speed of sound in the medium. The
Gaussian peak will remain uncorrupted by this effect fort
,tph, or roughly the time it takes fors(t)/s(0), theratio of
the Gaussian velocity width at timet to the initial width, to
equal the characteristic lengthf54nL/c, wheref is deter-
mined by the competition between diffusive spreading of
momentum and acoustic speed. The present method is thus
viable if the viscosity can be estimated during the short-time
decay t,tph. For t.tph, the momentum impulse starts to
interact with the phonons and the viscosity cannot be reliably
computed. The second limitation results from the modified
PBC. The actual velocity profile is only pseudoinfinite. A
molecule inside the central simulation box but near thex–z
face ‘‘feels’’ a fluid structure and flow field consistent with a
decaying Gaussian velocity profile in the direction towards
the center of the box. However, in the direction away from
the center of the box, it feels a periodic image consistent
with traditional PBC~see Fig. 1!. That is, the instantaneous
positions and velocities of molecules in the image boxes are

consistent with traditional PBC, while the infinite decaying
velocity profile is only mimicked in the central box when-
ever molecules cross thex–z faces. Molecules near the cen-
ter of the main box, where the Gaussian peak height is re-
corded, do not feel these edge effects until they propagate
from the edges in a time roughly equal totph. Thus, the
current method should be applicable for those systems in
which the viscosity can accurately be computed in times less
thantph. Both these effects can be minimized by choosing a
small or localized initial Gaussian velocity profile which de-
cays slowly near the boundaries.

From the above discussion it is clear that the determina-
tion of the correct size and shape of the initial Gaussian
impulse, governed by the parametersa0 and b0 , respec-
tively, is crucial. The value ofb0 can be fixed based on the
fact that a localized Gaussian which is very flat near the
boundaries is required to avoid the boundary effects dis-
cussed before. A localized Gaussian profile also is easier to
fit and gives a smoother peak velocity. This means that the
‘‘hump’’ in the initial Gaussian profile should be well within
the box. Characterizing the length scale of the hump as
2s(0) (52b0

21/2), we require that

b0@4/L2, ~16!

thus fixing the lower bound onb0 . A good estimate for the
value ofb0 would be;534/L2. To get a well-defined drift
velocity, the macroscopic drift velocity should be larger than
the thermal fluctuations in a bin. These fluctuations in thex
direction are of the order of (kBT/mN)1/2, wherem is the
mass of the molecule, andN is the number of molecules in
the bin. Therefore, to observe an appreciably well-resolved
Gaussian signal, we require

a0@~kBT/mN!1/2. ~17!

Excessively large values ofa0 produce large velocity
gradients~i.e., shear rates! in the box, resulting in shear
thinning.13 Thus, there exists an upper limit to the value of
a0 which can be realized by writing down the expression for
the average shear rate of the initial Gaussian velocity profile
given by

ġavg52a0@12exp~2b0L2/4!#/L. ~18!

The exponential term is negligible for the values ofb0 cho-
sen, and thereforeġavg'2a0 /L. Assuming that shear thin-
ning starts to occur for shear rates greater thanġmax, we
requireġavg,ġmax for Newtonian behavior to prevail. There-
fore, a0 should satisfy the condition

a0,ġmaxL/2. ~19!

The value ofġmax can be estimated as the inverse of the
longest relaxation time of moleculest, which can be esti-
mated for linear molecules from the integral of the end-to-
end vector autocorrelation function.14 The relaxation time is
difficult to estimate for atomic species, but can be approxi-
mated as the time taken for the diffusion length to become
equal tos, i.e.,t's2/6Ds , wheres is the atomic diameter

FIG. 2. The decay of the Gaussian velocity profile observed during the
course of a simulation of argon with initial parametersa05787 ms21 and
b054.331017 ms21. The velocity profile is recorded at the instantst 5 0, 2,
8, and 16 ps, shown as distinct points. The least-square fits are plotted along
each profile as shown by continuous curves.

2082 J. Chem. Phys., Vol. 113, No. 6, 8 August 2000 Arya, Maginn, and Chang



andDs is the self-diffusivity. Thus,ġmax can be quickly de-
termined from a short EMD simulation of the species under
concern.

For the rest of this paper, we will refer to the proposed
algorithm as the momentum impulse relaxation~MIR!
method. The MIR method is essentially a zero wave vector
technique in the sense that it mimics a pseudoinfinite system.
By using a highly localized Gaussian velocity profile with
modification of velocities at the boundaries, phonon feed-
back due to periodicity is minimized. This effectively elimi-
nates the dependence of shear viscosity on the wave vector.
We note that the local shear rate, which is related to the slope
of the Gaussian velocity profile, varies along the length of
the simulation box and with time. Since the shear viscosity is
dependent on the shear rate above the critical shear rate
ġmax, the viscosity computed using the MIR method at high
shear rate is a convolution of many local shear rate-
dependent viscosities. To eliminate this complication, as dis-
cussed before, a small Gaussian profile is used where the
local shear rate along the box at all times is less thanġmax.
This enables accurate calculation of the shear rate-
independent Newtonian viscosity.

IV. SIMULATION DETAILS

A. Argon

The shear viscosity of liquid argon at a density of 1.42
gcm23, temperature of 143.4 K, and pressure of 23.7 MPa
~pressure obtained from an EMD simulation, which includes
long-range pressure correction! is obtained using the MIR
method and compared with those obtained by standard EMD
and NEMD techniques. For the MIR method, we use a simu-
lation box of dimensionsL/23L3L/2, whereL is the length
of the box in they direction and is equal to 71 Å. The box
contains 2000 argon atoms treated as Lennard-Jones~LJ!
spheres with parameterse/kB5119.8 K ands53.41 Å. The
LJ potential is cut off at a radius of 3s. Newton’s equations
of motion for these molecules are integrated using the veloc-
ity Verlet algorithm2 with a time step of 2.17 fs. The system
is equilibrated for 20 ps using EMD with standard PBC and
velocity scaling. The Gaussian velocity profile is then intro-
duced in the equilibrated system at timet50 with the pa-
rametersa0577 ms21 andb054.3031017 m22. The length
of the box in they direction is divided into 19 bins, each of

width 3.74 Å. The peak velocity is determined from a least-
square fit to the average drift velocities calculated in each bin
at every time step. To investigate the non-Newtonian decay
of this peak, we repeat the above procedure for larger values
of a0 as discussed in the next section. All argon simulations
reported here are performed in the canonical ensemble,
where the temperature is kept constant using a Nose´–Hoover
thermostat15 with a time constant of 0.054 ps. Each of these
simulations is run for a time of 10 ps.

The NEMD and EMD simulations are performed in a
cubic simulation box of edge length 36 Å containing 1000
atoms. For NEMD runs~for both argon andn-butane! we use
the Sllod algorithm along with ‘‘sliding brick’’ boundary
conditions. The NEMD simulation runs vary from 0.2 ns for
the largest shear rate to 1 ns, for the smallest shear rate. The
EMD run consists of one long run of approximately 1 ns.
The rest of the parameters remain the same as those used for
the MIR method.

B. Butane

Liquid n-butane is simulated at a density of 0.583
gcm23, a temperature of 291.5 K, and a pressure of 2.07
MPa ~obtained from an EMD simulation!. A simulation box
of the same shape as that used for argon is chosen~with L
being equal to 87.2 Å! to simulate the above system using
the MIR method. The simulation box contains 1000 butane
molecules which are represented using a united atom~UA!
model in which the hydrogen atoms are incorporated within
the CH3 and CH2 groups. The force field used here is a
version of the transferable potentials for phase equilibrium
~TraPPE! model proposed by Sieppman and co-workers.16,17

The potential energy functions and the parameters used in
this model are presented in Table I. The model accounts for
bond stretching, bond bending, torsional rotations and van
der Waals interactions. The intermolecular interactions are
given by a Lennard–Jones potential with a cutoff of 10 Å.
For interactions between different groups a geometric com-
bining rule is used, so thats i j 5(s i i s j j )

1/2 and e
5(e i i e j j )

1/2. Bond stretching and bond angle bending poten-
tials are described with harmonic functions. A commonly
used dihedral angle potential function proposed by Jorgensen
and co-workers18 is also used. Long-ranged corrections are
included in the calculation of pressure. A multiple time step
algorithm is used to integrate the equations of motion with a

TABLE I. Potential energy functions and parameters for the TraPPE united atom model used in this work for
simulating butane.

Potential energy function Potential energy parameters

Nonbonded VLJ54« i j @(s i j /r i j )
122(s i j /r i j )

6# sCH3
53.77 Å, «CH3

/kB598.1 K
sCH2

53.93 Å, «CH2
/kB547.0 K

Bond stretching Vb5(1/2)kb(r 2r 0)2 kb /kB5452 900 K Å22

r 051.54 Å
Bond-angle bending Vu5(1/2)ku(u2u0)2 ku /kB562 500 K rad22

u05114°
Torsion Vf5a01a1(11cosf) a0 /kB50.0 K

1a2(12cos 2f) a1 /kB5355.03 K
1a3(11cos 3f) a2 /kB5268.19 K

a3 /kB5791.32 K
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time step of 1 fs for the fast modes and a large time step of
4 fs for the slower modes. The temperature is kept constant
using a Nose´–Hoover thermostat with a time constant of 0.1
ps. The details on the equations of motion, the multiple time
step algorithm and the thermostat are given elsewhere.14 The
system is equilibrated for 10 ps before the Gaussianx veloc-
ity with parametersa0590 ms21 andb055.031017 m22 is
imposed. The box is again divided into 19 bins along they
length of the box. The average velocities in these bins are
least-square fitted to a Gaussian function every time step.
The peak velocity data are collected every time step as be-
fore. The shear thinning behavior is also investigated in this
case by repeating the above procedure for larger values ofa0

~i.e., larger shear rates!.
The NEMD and EMD runs forn-butane are performed

in a cubic simulation box of edge length 34.6 Å containing
250 molecules. The force field, the multiple time step algo-
rithm, and thermostat remain the same as used in the MIR
method. The NEMD runs for the different shear rates vary
from 0.4 ns for the largest shear rate to 1.6 ns for the smallest
shear rate, whereas the EMD run consists of one long run of
1.6 ns.

V. RESULTS AND DISCUSSION

We begin by reporting the EMD, NEMD, and MIR re-
sults for shear viscosity of argon under the physical condi-
tions specified earlier. The shear viscosity computed from
EMD using the Green–Kubo expression is 0.232 mPa s. The
atomic virial is used to calculate the three pressure terms,
Pxy , Pxz , andPyz at every time step and the shear viscosity
is obtained by averaging over the three integrals@Eq. ~1!#.

We then conducted NEMD simulations to obtain the
shear viscosity. Figure 3 shows the shear viscosity as a func-

tion of the shear rate computed from NEMD simulations; the
results are also tabulated in Table II. The fluid exhibits non-
Newtonian behavior~shear thinning! at high shear rates, with
the plateau value at low shear rates giving the Newtonian
viscosity. The solid line is the fit to the simulated values
using the three-parameter Carreau model19

h5
h0

~11~lġ !2!a
, ~20!

whereh0 is the Newtonian shear viscosity, andl anda are
the other two parameters. The Newtonian viscosity obtained
from the NEMD simulations is 0.235 mPa s, which is nearly
identical to that obtained using EMD. The Newtonian viscos-
ity obtained by fitting the results to another model20 is
around 7% higher, and is not reported here.

Before presenting results from application of the MIR
method to argon, we would like to confirm that the values of
a0 andb0 chosen satisfy the requirements set by Eqs.~16!,
~17!, and~19!. First, the chosen value ofb0 is well above the
lower limit of 4/L2 (55.331016 m22). The critical shear
rate at which Newtonian behavior disappears is estimated to
be 16.831010 s21, this being calculated as the inverse of the
relaxation time,t, estimated from the self-diffusivity of ar-
gon. The value ofa0 associated with this value ofġmax is
594 ms21, which corresponds to its upper limit. The fluctua-
tions in thex velocity in each bin are on the order of 17
ms21, which sets the lower limit for thea0 . To obtain a
good estimate of the Newtonian viscosity using the above
criteria, we found the value ofa0577 ms21 to be the most
appropriate. The fluctuations are significant compared to the
drift velocity, especially near the box boundaries where the
drift velocity is small. Therefore, we ran 20 similar runs,
each starting from a different initial configuration of mol-
ecules, and the results presented here are the averages over
these 20 runs. Figure 4 shows the observed decay of the peak
velocity with time. The decays corresponding to the shear
viscosity obtained from the EMD and NEMD methods are
also plotted in the same figure for comparison. We can ob-
serve qualitatively that the viscosity obtained from the MIR

FIG. 3. Shear viscosity (h) versus shear rate (ġ) for argon. The open
squares with error bars represent the NEMD simulation results. The solid
line is the Carreau fit for the NEMD data. The filled squares are the shear
viscosities obtained for different average shear rates of the Gaussian veloc-
ity profile at timet50 using the MIR method. The filled square with error
bars, labeled ‘‘A,’’ refers to the shear viscosity ata0577 ms21, which has
been used for comparison with EMD and NEMD methods. The solid circle
with error bars represents the viscosity obtained from EMD. The two verti-
cal dotted lines show the average shear rates corresponding to the upper and
lower bounds on the value ofa0 .

TABLE II. Shear viscosity (h) values for argon andn-butane from NEMD

simulations at different shear rates (ġ).

Argon Butane

log ġ (s21) h ~mPa s! t run ~ps! log ġ (s21) h ~mPa s! t run ~ps!

9.66 0.23160.018 1000 10.70 0.12960.011 1600
9.96 0.23660.013 1000 11.00 0.13060.007 1600

10.36 0.23360.011 1000 11.30 0.12960.005 1000
10.57 0.23060.007 1000 11.60 0.12560.005 1000
10.66 0.23760.006 500 11.78 0.12060.003 1000
10.97 0.22860.003 500 11.90 0.11660.002 1000
11.14 0.22460.003 500 12.00 0.11360.001 400
11.27 0.22160.002 500 12.08 0.11060.002 400
11.36 0.21660.002 500 12.15 0.10660.001 400
11.44 0.21060.001 200 12.20 0.10460.002 400
11.51 0.20660.001 200 12.26 0.10260.001 400
11.56 0.20160.002 200 12.30 0.10060.001 400
11.62 0.19960.001 200
11.66 0.19560.001 200
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method matches very well with those obtained from NEMD
and EMD. The value of the shear velocity obtained is equal
to 0.227 mPa s. This value of viscosity is 3% lower than that
obtained from NEMD and 2% lower than that obtained from
EMD simulations. These differences are well within the sta-
tistical errors of the simulations, as well as within the error
associated with the fitting procedures used to extrapolate
NEMD results to the Newtonian viscosity. The statistical un-
certainty of this viscosity value is estimated by dividing
these 20 runs into 3 blocks containing nearly equal number
of runs, calculating the standard deviation of the average
viscosities in each block, and then dividing this value by 3.
The statistical uncertainty is nearly of the same magnitude as
the uncertainties obtained from the EMD and NEMD runs,
as shown in Fig. 3. Thus, the MIR method gives Newtonian
viscosities that are identical to those obtained from EMD and
NEMD. We notice that during the simulation length~510
ps! no boundary effects or phonon modes are observed in our
simulations, indicating that the Gaussian fit is good fort
,tph ~wherec for argon in these conditions is;500 ms21,
therefore tph;14 ps!, viz., L is sufficiently large that the

spreading profile does not ‘‘see’’ the box boundary through
phonon interaction and remains a Gaussian.

To determine the degree of shear thinning that occurs at
the chosen value ofa0 , the shear rate is estimated as the
average shear rate along the length of the simulation box at
time t50 at these values ofa0 andb0 using Eq.~18!. For the
a0 andb0 used here,ġavg is equal to 2.1731010 s21, which
corresponds to point A in Fig. 3. We can see that at this
small shear rate, the shear thinning is minimal and the ob-
served viscosity is very close to the Newtonian viscosity.
Shear thinning can be observed if larger values of the param-
etera0 are used. In Fig. 3, calculated viscosities obtained are
plotted as a function of theinitial average shear rate corre-
sponding to each value ofa0 . We can clearly see that asa0

increases~or, as the average shear rate increases!, the viscos-
ity drops, thereby confirming that shear thinning does occur
at large values ofa0 . The results are also presented in detail
in Table III. It should be emphasized that this is just a crude
way of showing non-Newtonian behavior, since the shear
viscosity varies across the length of the simulation box and
also varies with time~viscosity is dependent on the shear
rate, which itself varies with time and position along they
direction!. Also shown in Fig. 3 as dashed lines are the shear
rates corresponding to the upper and lower limits ona0 . We
also conducted a series of simulation runs at a very small
value ofa0 (540 ms21) to verify the accuracy of the shear
viscosity reported earlier~using the MIR method!. The shear
viscosity obtained is plotted as the filled square to the left of
point A in Fig. 3, and it can be observed that the value agrees
very well with the shear viscosity reported earlier~point A!.
Lower values ofa0 were also tried, but the signal-to-noise
ratio was too low to obtain reliable results.

We now present the results forn-butane in the same
order as presented for the case of argon. The shear viscosity
obtained from the EMD technique using the Green–Kubo
expression is equal to 0.135 mPa s. We ran the simulation for
approximately 1.6 ns, therefore resulting in an uncertainty of
approximately 5% using Eq.~3!. Figure 5 shows the shear
viscosity as a function of the shear rate obtained from the
NEMD runs. These results are also presented in Table II. The
solid line is the fit to the simulated values using the Carreau
model given by Eq.~20!. We obtained a shear viscosity of

FIG. 4. Decay of the Gaussian peak velocity with time for argon witha0

577 ms21 andb054.331017 m22. The triangles represent the actual decay
obtained from our simulations. The solid curve refers to the decay corre-
sponding to viscosity obtained from NEMD simulations. The dashed curve
refers to the decay corresponding to viscosity obtained from EMD simula-
tions.

TABLE III. The MIR results: Shear viscosity (h), average initial shear rate (ġavg) and number of runs (Nrun)
for different values ofa0 . The statistical uncertainties~not reported for all values ofa0) in the tabulated shear
viscosities decrease as larger values ofa0 are used.Nruns refers to the number of simulation runs conducted and
averaged over to obtain the shear viscosity.

Argon Butane

a0 log ġavg h a0 log ġavg h
(ms21) (s21) ~mPa s! Nruns (ms21) (s21) ~mPa s! Nruns

39 10.037 0.235 40 90 10.316 0.132060.01 20
77 10.338 0.22760.009 20 200 10.663 0.1323 20

154 10.639 0.241 10 500 11.061 0.1320 10
308 10.940 0.238 5 1000 11.360 0.1288 5
770 11.338 0.210 3 2000 11.662 0.1125 5

1540 11.639 0.177 2
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0.130 mPa s from the fit, in good agreement with EMD re-
sults.

A similar analysis as before is done to obtain estimates
of the upper and lower bounds of the MIR velocity profile
parameters. The lower bound on the value ofb0 is 5.3
31016 m22 as calculated from Eq.~16!, which is well below
the value of 531017 m22 chosen here. The longest relax-
ation time in butane is 1.37 ps, which is the rotational relax-
ation time calculated from an EMD simulation. Therefore,
ġmax57.331011 s21, which corresponds to the upper bound
value of 3140 ms21 for a0 . The lower bound fora0 is 28
ms21, corresponding to the thermal fluctuations. Again, the
chosen value ofa0 (590 ms21) to obtain the Newtonian
viscosity is found to be very appropriate. Twenty simulations
starting from different initial configurations were conducted
and averaged to improve the signal-to-noise ratio. Figure 6
shows the average decay of the peak velocity for the 20 runs.
The value of shear viscosity obtained from the MIR method
is equal to 0.132 mPa s, which is about 2% higher than those
obtained from EMD and NEMD simulations. Again, these
results are within the statistical accuracy of the EMD and
NEMD results, indicating that the MIR method yields iden-
tical viscosities. No boundary effects are noticed as the simu-
lation lengtht510 ps is about the same astph58.5 ps~with
c;950 ms21). Point A in Fig. 5 corresponds to the average
shear rate at the beginning of the run at the viscosity just
obtained. We can again see that at this low shear rate, shear
thinning is negligible and the observed viscosity is very close
to the Newtonian viscosity. A similar analysis, as in the case
of argon, is done to obtain the approximate shear rate depen-
dence of the viscosity. The viscosities obtained for larger
values ofa0 from the MIR method are plotted as a function
of the average shear rates in Fig. 5. The results are tabulated

in Table III. The upper and lower bounds on the values ofa0

are shown in the same figure as dashed, vertical lines.
The main advantage of the MIR method for calculating

shear viscosity of fluids is that the lengths of the simulations
are significantly shorter than those corresponding to the
EMD or NEMD methods~by a factor of;100). Although a
larger simulation box is required to eliminate edge effects
and obtain a well-resolved Gaussian profile, the computa-
tional savings are still on the order of 20–30 times. It is
worth mentioning that large system sizes are typically not the
biggest problem in MD, since parallelization strategies such
as domain decomposition become more effective for larger
systems. What makes EMD and NEMD methods so compu-
tationally demanding is the long simulation times that are
required, particularly for computing collective transport
properties such as viscosity. The MIR method is desirable in
this regard, because although it requires large system sizes,
fairly short simulation lengths are required, making it an eas-
ily parallelizable technique. In this work we have not tried to
investigate if accurate shear viscosities can be obtained with
systems smaller than those used in this work. Reducing the
system size would lead to highly fluctuating drift velocities
in the bins, and hence a very noisy Gaussian peak velocity.
This means that large values ofa0 would have to be used,
which leads to shear thinning. On the other hand, the use of
a larger system would enable us to use small values ofa0 ,
and hence obtain more accurate estimates of the Newtonian
shear viscosity, but the CPU time would be longer.

Table IV summarizes the computational advantages of
using the method proposed here over conventional EMD and
NEMD methods. We have only used simple ‘‘independent
run’’ parallel computation for the 20 runs required by our
methodology and the multiple runs required for NEMD at
different shear rates. Therefore, the wall clock times required
by the MIR method are smaller by a factor of 20 than the
total CPU times required. This is not true for the NEMD
simulations, as the runs are not equal in length. Therefore,

FIG. 5. Shear viscosity (h) versus shear rate (ġ) for butane. The open
squares with error bars represent the NEMD simulation results. The solid
line is the Carreau fit for the NEMD data. The filled squares are the shear
viscosities obtained for different average shear rates of the Gaussian veloc-
ity profile at timet50. The filled square with error bars, labeled ‘‘A,’’ refers
to the shear viscosity ata0590 ms21 which has been used for comparison
with EMD and NEMD methods. The solid circle with error bars represents
the viscosity obtained from EMD. The two vertical dotted lines show the
average shear rates corresponding to the upper and lower bounds on the
value ofa0 .

FIG. 6. Decay of the Gaussian peak velocity with time forn-butane with
a0590 ms21 and b055.031017 m22. The triangles represent the actual
decay obtained from our simulations. The solid curve refers to the decay
corresponding to viscosity obtained from NEMD simulations. The dashed
curve refers to the decay corresponding to viscosity obtained from EMD
simulations.
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the wall clock time required is limited by the longest run,
invariably the run at the lowest shear rate. It should be em-
phasized that the purpose of this paper is not to compare the
EMD and NEMD methods, and that a more exhaustive com-
parison might yield slightly different performance results for
these methods. What the present analysis shows is that the
MIR method results in a significant reduction in computa-
tional time over the EMD and NEMD methods while yield-
ing a high degree of accuracy.

VI. CONCLUSIONS

In this paper, a novel momentum impulse relaxation
method for determining the shear viscosity of Newtonian
liquids has been introduced. The method is based on the fact
that a parallel Gaussian flow in an infinite domain, if left
unperturbed, decays with time in a self-similar manner. In
particular, the decay of the peak of the Gaussian velocity
profile is directly related to viscosity of the fluid as shown
theoretically in Sec II. This idea has been incorporated into a
molecular dynamics simulation algorithm, which involves
modifying the periodic boundary conditions in the direction
of momentum transfer so as to enable momentum to diffuse
out and give the correct transient behavior of the velocity
profile. A localized Gaussian velocity profile is used which
minimizes phonon corruption due to periodicity. Physical
criteria have also been presented to enable a user to choose
the ideal Gaussian velocity profile which would give accu-
rate estimates for the Newtonian shear viscosity. The pro-
posed methodology has been used to determine the Newton-
ian shear viscosity for a system of argon atoms andn-butane
molecules. The shear viscosities obtained from the short-
time decay of the peak velocity in our method are within
2%–3% of the values obtained from the EMD and NEMD
methods, which are well within the uncertainties of the EMD
and NEMD simulations. The main advantage of this method
is that it is very computationally efficient and accurate values
of viscosity can be obtained with huge reductions in the
computational time, on the order of 20–30 times, even
though larger systems have to be used.

In the future, we would like to apply this methodology to
more viscous systems such as polymers and long hydrocar-

bons, where current EMD and NEMD methods require pro-
hibitively large times to determine the shear viscosity. Since
these molecules have high viscosities the Gaussian velocity
profile in our methodology would decay quite rapidly, thus
requiring very short simulation lengths. Though these mol-
ecules would shear thin at very small shear rates, the thermal
fluctuations would also be much smaller, allowing us to
simulate in the small shear rate regions, i.e., small values of
a0 .
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TABLE IV. Comparison of the EMD, NEMD, and MIR methods of obtaining Newtonian shear viscosity in
terms of the computational requirements, system sizes, and simulation lengths.

Argon Butane

EMD NEMD MIR EMD NEMD MIR

No. of molecules/atoms 1000 1000 2000 250 250 1000
No. of runs 1 14 20 1 12 20
Simulation lengtha ~ps! 1000 1000 10 1600 1600 10
Total CPU timeb ~hrs! 21 170 12 19 125 25
Wall clock timec ~hrs! 21 23 0.6 19 22 1.3

aThe longest of the multiple NEMD runs is tabulated.
bAll simulations performed on SunSPARC ULTRA 5 workstations. The total CPU time being calculated as the
sum of the individual CPU times of each run in case of multiple runs.

cThe wall clock time of the NEMD run is greater than that of an EMD run for the same system size and
simulation length because the neighbor list used is not as efficient for NEMD as it is for EMD.
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