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Efficient viscosity estimation from molecular dynamics simulation
via momentum impulse relaxation
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A new momentum impulse relaxation method for obtaining the shear viscosity of Newtonian fluids
using molecular dynamics simulations is introduced. The method involves the resolution of a
decaying coarse-grain Gaussian velocity profile in a properly thermostated simulation box. This
localized velocity profile, along with a modification of the periodic boundary conditions, allows
computations in a periodic box with minimal phonon feedback due to periodicity. The short-time
decay of the small-amplitude velocity profile yields shear viscosities for atomic and molecular
species that are in quantitative agreement with those obtained using conventional techniques, but
with more than an order of magnitude reduction in computational effort.2000 American
Institute of Physicg.S0021-9606800)51130-1

I. INTRODUCTION dependencé? Another drawback is that the autocorrelation

_ function in the Green—Kubo expression decays with long-
Several molecular dynamics methods have been deve{l-me taild (~r3/2 ast—). Therefore, the integration in

oped over the years to estimate the macroscopic ranspogly (1) when truncated at a finite=t,,, contains truncation

properties of fluids. The calculation of one of these proper &7 given by
ties, the shear viscosity, is of considerable practical interest.

The molecular dynamics methods for calculating the shear (27 12
o=\|—

; ()

viscosity fall into one of two main categories: equilibrium
molecular dynamic$EMD) or nonequilibrium molecular dy-
namics(NEMD) techniques. The EMD techniques involve whereo is the uncertainty in the value of the viscosity, and
either the calculation of time correlation functions by mea- is the relaxation time of the molecules. This means that
suring the decay of near-equilibrium fluctuations in proper-prohibitively long EMD simulations have to be run for mol-
ties of the fluid(Green—Kubo methodlsr by accumulating ecules with long relaxation times to achieve acceptable lev-
displacements in properties over tinjEinstein methods  els of error.

trun

The Green—Kubo relatidr for shear viscosityz, is given The NEMD techniques usually involve measuring the
by macroscopic steady-state response of the system to a perturb-
V (= ing field and relating the linear response to a transport coef-
7= ﬁf (Px0)Pyy(1))dt, (1) ficient. One of the earliest NEMD techniques, which main-
B!JoO tains conventional periodic boundary conditions, involves

imposing a spatially periodic external force on the molecules
to generate an oscillatory velocity proffl@he amplitude of
this velocity profile at steady state is inversely related to the
shear viscosity, and hence the viscosity can be calculated.

where(:--) denotes the ensemble averayeis the volume,
kg is the Boltzmann’s constant, is the temperaturd,is the
time andP,, is thexz component of the pressure tengor

given by . .
The shear viscosity is wavelength dependent, however, and
PiPi o the Newtonian shear viscosity is obtained only in the long
PV=iZl Wi“Li:l ,Z>| rijFij 2) wavelength limit, i.e., in the limik—0, wherek is the wave
. _ vector of the oscillatory perturbation. This means that a very
where p; is the momentum vector for molecule rij  Jarge simulation box is required to get reasonably accurate
=r;—r; is the vector joining the centers of moleculemd],  values of shear viscosity, which limits the usefulness of this

andF; is the force between them. The above expression igechnique. The reason for this box-size dependent viscosity
known as the “molecular” virial, since the sum is over all js that the periodic boundary conditions allow acoustic
the moleculesN. The shear viscosity can also be calculatedmodes(phonons to propagate persistent fluctuations around
from the “atomic” virial which is of similar form, except the box due to periodic feedback.
that the summation is over individual atomic species rather  The more successful NEMD techniques involve impos-
than molecules. ing a planar Couette flow velocity profilg.e., zero wave

A weakness of both the EMD methods is that the Shea(/ector techniques One of the most efficient NEMD a|g0_
viscosity suffers from substantial nonmonotonic system sizgjthms for shear viscosity is the Sllod algoritHi The Sllod
algorithm has been used by several authors, and has been

dElectronic mail: ed@nd.edu shown to be exact for arbitrarily large shear rajesand is
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therefore appropriate for studying non-Newtonian regimesminimized. This is not possible with conventional NEMD
The modified equations of motion for the Sllod algorithm aremethods, as steady equilibrium necessitates phonon equili-
bration across the periodic boundaries. To this end, we use a

%ZE-FI’-'VU (4 ~ Gaussian profile whose relaxation is concentrated near its
dt. m ’ peak, away from the boundaries where phonon corruption
dominates. We also modify periodic boundary conditions in
%=F-—p~Vu—ap- (5)  the direction of momentum transport to better mimic a
d P a Gaussian decay in an infinite domain and to minimize peri-

odic phonon feedback. We exploit the self-similarity of the
Gaussian decay to anticipate the velocity modification at the
boundary without explicit knowledge of the viscosity. As an
application, this method is used to calculate the shear viscos-
ity for argon andn-butane.

whereF; is the force on moleculg « is the thermostating
multiplier, u= (u;,,0,0), andu;, = yr,, wherez s the direc-
tion normal to the flow andc is the direction of flow. The
Sllod algorithm is combined with the Lees—Edwards *“slid-
ing brick” periodic boundary condition¥. The strain rate
dependent shear viscosity is obtained from the constitutive
equation

Il. THEORY

(6) Consider a parallel flow of a Newtonian fluid in txe
direction in an infinite domain, with velocity(y,t) ex-

The Newtonian shear viscosity is estimated by extrapoPressed aguy(y,t),0,0] in Cartesian coordinates. From a
lating the shear viscosities to zero shear rate. Both EMD anf@croscopic hydrodynamic standpoint, neglecting effects of
NEMD methods give similar values for the Newtonian shearViScous heating, the transient motion of the fluid is deter-
viscosities, however, an advantage of this NEMD method ignined by the Navier—Stokes equation, given by
that the shear rate dependence of the viscosity is obtained 9
directly from NEMD, while EMD provides the zero shear p E+U~V
rate value only. One of the drawbacks of this NEMD method
is that there is no generally accepted theoretical model fowherep is the density of the fluidP is the pressurey is the
the shear rate dependence of the shear viscosity. The resuMewtonian shear viscosity, amglis the external force per
ing Newtonian viscosity obtained from an NEMD simulation unit mass of the fluid. Assuming that the external force on
depends on the model used in the extrapolation procedurghe system is zero and that no pressure gradients exist in the
To overcome this limitation, NEMD simulations at very system, Eq(7) simplifies to the following equation in the
small shear rates may be performed. However, this defeatirection:
the purpose of the NEMD method since these low shear rate )
simulations require nearly as much computation time as the 9Ux(¥,t) _ V‘? Ux(y,1) ®)

EMD methods. Though the NEMD runs can be parallelized dt ay?

for different shear rates, the computational time required to h is the ki e i i ai bv/o. Let
obtain the viscosity is limited by these long simulation runs'/1€T€ ¥ 1S € Kinemalic viSCosily given byjlp. Let us
mpose the condition that at tinte=0, u,(y,t) is described

at low shear rates. Although refinements to the traditiona the following G ian function:
NEMD methods are being developed which reduce the com?Y the following >aussian function:

. —(Py
n(y)= <- Z>-
Y

u=—VP+ yV2u+pg, (7)

putatiopal C?fzt l_ay improving th_e s_igna_l-to-n_oise ratio at ux(y,0)=aoe‘b0>’2, 9)
small fields'*? viscosity calculation is still quite demand- )
ing. where parametera, and b, are equal to the peak height,

In brief, the existing molecular dynami¢®D) methods u,(0), and theinverse of the variance of the Gaussian func-
for estimating the shear viscosity of fluids require long simu-tion, o~ %(0), respectively. This then forms the initial condi-
lation times. For systems composed of big molecules, theséon for the partial differential equation given by E@).
simulations become prohibitively long, and therefore faster ~ In an infinite domain without specified length scales and
ways of obtaining the viscosity of fluids are required. In thewall dissipation, this velocity profile will decay with respect
present article, we present a novel technique for calculatiné? time as a result ok-momentum transport along the
Newtonian shear viscosities with Signiﬁcanﬂy less Computa.direction. The initial Gaussian prOfile decays in a self-similar
tional effort than standard methods. This involves a shortmanner such that the profile at every moment is a Gaussian
time transient analysis of a Gaussian velocity impulse im- a2
posed on a periodic box at tinte=0. A major obstacle in uy(y,t)= (14_#)
using periodic simulation boxes for both EMD and NEMD 0
techniques is the anomalous phonon propagation of momefvheret,=1/4vb,. In particular, the peak velocity,(t),
tum through the periodic boundaries. We overcome this obwhich is equal ta, at timet=0, decays with respect to time
stacle by using an initial coarse-grain velocity impulse muchas
narrower than the box dimension. If the shear viscosity can
be_ estimated from the short-tim_e simulation before _the relax- Up(t) = up(O)( 14+ —
ation reaches the box boundaries, phonon corruption can be to

1/2
} e~ boy2/(1+t/to), (10)

~172
11
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Also, the variance of the profiley?(t), increases linearly y u,ly,) = aexp (-by?) vl = u ly) < vt
with time as /‘\/ "
L 4V
t ¥n .
a?(t)=0?(0)| 14+ —|. (12)
to y
Therefore, ifuy(t) is plotted as a function of time and fitted g r T_.x

to a function of the formA/(1+ Bt)*? (whereA andB are
equal toag and 1f,, respectively, the shear viscosity can be

obtained from the relation SN
) v:"“
pB 1
n= m . (13)
0 GAUSSIAN VELOCITY PROFILE SIMULATION BOX

Likewise, the shear viscosity could also be estimated by fit- o ) o o

tng the variance to a linear function n time. The essence of > L Sthematc dagram shaug he modiicaton o e petadc bounc

the algorithm presented here is to conduct a transient mo-

lecular dynamics simulation that satisfies the conditions out-

lined above. The Newtonian viscosity is then extracted from

the decay of the Gaussian peak via Etp). course of the simulation, this modification to the
x-component velocity gives rise to the desired momentum
loss through these two faces. To recap, whenever a molecule

IIl. SIMULATION ALGORITHM leaves the box through one of tkez faces, the« velocity of

This section describes the MD procedure adopted tdh€ mirror molecule is replaced by the extrapolated value of
simulate the above infinite system using a finite but periodidh® Gaussian velocity profile at tiyeeoordinate of the mirror
simulation box. We start with an equilibrated system of mol-molecule at the time step before it enters the box. The other
ecules in a simulation box centered at the origin, and ofW0 components of the velocity are left unchanged.
lengthL in theyy direction. Standard periodic boundary con- T determine this extrapolated value of the Gaussian ve-
ditions (PBC) are applied to the positions of all the mol- 10City (Say, at timet), we need to know the Gaussian veloc-
ecules to model an infinite system, and the minimum imagd? Profile at this time. In other words, we require the peak
convention is maintained. height, u,(t), and the varianceg?(t), of the Gaussian ve-

To initialize the Gaussiar-component velocity profile, 0City profile. For this purpose, the range from-—L/2 to
the hydrodynamic velocity given by E¢9) is added to all Y =L/2is divided intoN, bins, each of widthA =L/N, and
the atoms of the molecules &t 0. For molecular systemg, ~ having midpointsy,,, wherem=1,2, ... Ny. The basic in-
is the center of mass of the molecule. A thermostat is used tfprmation recorded is the averagecomponent velocity of
keep the temperature at the desired value, where the temperf&9lecules in each of those bins, denotedgs The number
ture is specified in such a way so as to eliminate the contriof binsN, should be sufficiently largeabout 20 to obtain a
bution made from the mean kinetic energy of the molecule$atisfactory resolution of the Gaussian. Also, the bins should
due to the drift velocity in thex direction. A system with a Nhave a sufficient number of moleculesbout 100 to pro-
decaying velocity profile given by Eq10) conserves mo- duce a well-defined drift velocity in each bin. At each time
mentum in they and z directions, but constantly loses the Step the average velocity in each bin,, is calculated and
x-component of the momentum along tiedirection. To  the resulting velocity profile is fitted to the two-parameter
model this transient behavior, we utilize standard PBC fofGaussian function given by
the velocities in thex andz direction, but the velocity in the U (t)=u (t)efyzla'z(t) (14)

A o ) . X D .

y direction is modified to incorporate this-momentum
“leak” through the top and bottom faces of the simulation ~ The two fit parametersi,(t) ando(t), are then used to
box. determine the extrapolatedcomponent velocityu£(t), of

To see how this is done in practice, consider a moleculéhe image molecule entering the box to replace a molecule
leaving the bottom face of the simulation box as shown inleaving the box through the-z faces, given by
Fig. 1 (g two-dimensional box is shqwn here for_simplit)ity WE(D) =u (t)e‘yz(t‘“)“’z(t) (15
According to standard PBC, the image of this molecule x P '
would enter at the top face with the same velocity, thus conwherey(t— At) is they coordinate of the image molecule at
serving momentum in all directions, which is inconsistentthe time step before it enters the box. The same fit param-
with an infinite system having a velocity profile given by Eq. eters are used to determine the peak velocity at each time
(10). To model such a system, we force the molecule enterstep, which is then plotted as a function of time to obtain the
ing the box at the top face to have gitomponent velocity shear viscosity from Eq.13). Hence, at no time do we re-
consistent with the prevailing Gaussian velocity profile givenquire the value of shear viscosity to extrapolate the velocity
by Eqg. (10). Since the image molecule is farther from the profile, as the shear viscosity is manifested in the self-similar
center of the Gaussian profile than the central molecule thdecaying nature of the imposed Gaussian velocity profile
instant it enters the box, it is given a slightly smaller given by Eq.(10). An obvious advantage of this method is
x-component velocity according to Eq10). During the that we do not calculate the stress tensor, which is notori-
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consistent with traditional PBC, while the infinite decaying

8000 Bt 0ps 1 velocity profile is only mimicked in the central box when-
®1i=2ps
et 8ps ever molecules cross the-z faces. Molecules near the cen-
At16ps ter of the main box, where the Gaussian peak height is re-

8000
corded, do not feel these edge effects until they propagate

from the edges in a time roughly equal tg,. Thus, the
current method should be applicable for those systems in
which the viscosity can accurately be computed in times less
thant,,. Both these effects can be minimized by choosing a
small or localized initial Gaussian velocity profile which de-
cays slowly near the boundaries.

From the above discussion it is clear that the determina-
tion of the correct size and shape of the initial Gaussian
40 20 o po 40 impulse, governed by the parametexg and b,, respec-

YA tively, is crucial. The value ob, can be fixed based on the
FIG. 2. The decay of the Gaussian velocity profile observed durlng tht:-zf'?‘lCt that a localized Gaussian which is very flat near the
course of a S|mulat|on of argon with initial parametegs=787 ms ' and ~ boundaries is required to avoid the boundary effects dis-
bo=4.3x 10" ms™1. The velocity profile is recorded at the instants 0, 2,  cussed before. A localized Gaussian profile also is easier to
8, and 16 ps, shown as distinct points. The least-square fits are plotted alof gnd gives a smoother peak velocity. This means that the
each profile as shown by continuous curves. “hump” in the initial Gaussian profile should be well within
the box. Characterizing the length scale of the hump as

—opn- U ;
ously difficult to compute and fluctuates very rapidly, as in20(0) (=2bg ), we require that
the case of EMD and NEMD methods. Instead, we evaluate b 4/L2 (16)
a less fluctuating and easily computed quantity, the average 0 '

velocity in each bin. Figure 2 shows the evolution of thethys fixing the lower bound oh,. A good estimate for the
decaying Gaussian profile with tlme for the case of argonajue ofb, would be~5x4/L2. To get a well-defined drift
Wlth initial parameters ofy=787 ms * andby=4.3x10""  yelocity, the macroscopic drift velocity should be larger than
m~? using the modified periodic boundary conditions. the thermal fluctuations in a bin. These fluctuations inxhe
There are two main limitations of the current methOd,direction are of the order OfkéT/m N)1/2, wherem is the
both of which stem from the nature of the periodicity im- mass of the molecule, ard is the number of molecules in

posed on the system. First, as with traditional EMD andthe bin. Therefore, to observe an appreciably well-resolved
NEMD methods, localized acoustiphonon fluctuations  Gaussian signal, we require

can travel back to the central box domain via PBC and am-

plify fluctuations within the box. The current method gener-  ay> (kg T/mN)*2. (17
ates additional phonon waves due to the modification of ve-

locities that takes place at the system boundaries. The EXxcessively large values af, produce large velocity
artificial effects of these anomalous fluctuations are typmallﬂrad'ents(l e., shear ratgsin the box, resulting in shear
overcome through extrapolation of results using progresthinning:® Thus, there exists an upper limit to the value of
sively larger simulation boxes. In the current approach, théo Which can be realized by writing down the expression for
phonon wave generated a0 will not return until t,, the average shear rate of the initial Gaussian velocity profile
=L/c, wherec is the speed of sound in the medium. The given by

Gaussian peak will remain uncorrupted by this effect tfor )

<tyn, or roughly the time it takes far(t)/o(0), theratio of Yavg=280[ 1 —exp( —boL?/4)J/L. (18

the Gaussian velocity width at tinteto the initial width, to _ . -
equal the characteristic length=4vL/c, whered is deter- The exponential term is negligible for the valueshgfcho-
mined by the competition between diffusive spreading ofs€n, and thereforer,,q~2a,/L. Assuming that shear thin-
momentum and acoustic speed. The present method is thténg starts to occur for shear rates greater thany, we
viable if the viscosity can be estimated during the short- tlmerequweyavg< Ymax for Newtonian behavior to prevail. There-
decayt<t,,. Fort>t,,, the momentum impulse starts to fore, a, should satisfy the condition

interact with the phonons and the viscosity cannot be reliably

computed. The second limitation results from the modified  ag< y,al/2. (19
PBC. The actual velocity profile is only pseudoinfinite. A .

molecule inside the central simulation box but nearxkhe  The value ofy,,, can be estimated as the inverse of the
face “feels” a fluid structure and flow field consistent with a longest relaxation time of molecules which can be esti-
decaying Gaussian velocity profile in the direction towardsmated for linear molecules from the integral of the end-to-
the center of the box. However, in the direction away fromend vector autocorrelation functidhThe relaxation time is
the center of the box, it feels a periodic image consistentlifficult to estimate for atomic species, but can be approxi-
with traditional PBC(see Fig. 1 That is, the instantaneous mated as the time taken for the diffusion length to become
positions and velocities of molecules in the image boxes arequal too, i.e., 7~ 0?/6D, whereo is the atomic diameter

4000

Uyx(m/s)

2000 A
*

00

-200.0
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TABLE |. Potential energy functions and parameters for the TraPPE united atom model used in this work for
simulating butane.

Potential energy function Potential energy parameters
Nonbonded VLJ=48ij[(0-ij/rij)lz_(g-ij /rij)e] (TCH3:3.77 A,ECHS/szgg.l K
ocn,=3.93 A, ecy, lkg=47.0 K
Bond stretching V= (1/2)ky(r —r)? Ky /kg=452 900 K A2
ro=1.54 A
Bond-angle bending  V,=(1/2)ky(6— 6,)? Ky/kg=62 500 K rad 2
0o=114°
Torsion Vg=ag+a,(1+cose) ay/kg=0.0 K
+a,(1—cos 2) a; /kg=355.03 K
+a3(1+cos 3p) a,/kg=—68.19 K

as/kg="791.32 K

width 3.74 A. The peak velocity is determined from a least-
Square fit to the average drift velocities calculated in each bin
at every time step. To investigate the non-Newtonian decay
of this peak, we repeat the above procedure for larger values
of ag as discussed in the next section. All argon simulations

method. The MIR method is essentially a zero wave vectoFer?ortet?] htere aret per_forkmetd n :het ca_nonp;lbl;wsemble,

technique in the sense that it mimics a pseudoinfinite systenﬁ ere t;ﬁemt[;erat.ure IS e;: c;)n? g%slf'ng E h fvfhr

By using a highly localized Gaussian velocity profile with sirirLTl];[?ons \i/ll rusfgpz (t:icr)r?; 31[]18 ps. bs. Each of these

modification of velociti h ndari honon feed- . N .
odification of velocities at the boundaries, phonon feed The NEMD and EMD simulations are performed in a

back due to periodicity is minimized. This effectively elimi- o . L
: : bic simulation box of edge length 36 A containing 1000
nates the dependence of shear viscosity on the wave vect(ﬁ?oms. For NEMD rungfor both argon andi-butang we use

We note that the local shear rate, which is related to the slop e Sllod algorithm along with “sliding brick” boundary

of the Gaussian velocity profile, varies along the length oft . . .
the simulation box and with time. Since the shear viscosity iSCOI"IdItIOI’]S. The NEMD simulation runs vary from 0.2 ns for
e largest shear rate to 1 ns, for the smallest shear rate. The

dependent on the shear rate above the critical shear ra D run consists of one long run of approximately 1 ns
Ymax, the wsposny computgd using the MIR method at hlghThe rest of the parameters remain the same as those used for
shear rate is a convolution of many local shear ratey o« MIR method

dependent viscosities. To eliminate this complication, as dis- '

cussed before, a small Gaussian profile is used where the

. . ; B. Butane
local shear rate along the box at all times is less thag..
This enables accurate calculation of the shear rate- Liquid n-butane is simulated at a density of 0.583
independent Newtonian viscosity. gem 3, a temperature of 291.5 K, and a pressure of 2.07
MPa (obtained from an EMD simulationA simulation box

IV. SIMULATION DETAILS of the same shape as that used for argon is choséh L
being equal to 87.2 Ato simulate the above system using
the MIR method. The simulation box contains 1000 butane

The shear viscosity of liquid argon at a density of 1.42molecules which are represented using a united a1d)
gcm 3, temperature of 143.4 K, and pressure of 23.7 MPamodel in which the hydrogen atoms are incorporated within
(pressure obtained from an EMD simulation, which includesthe CH; and CH, groups. The force field used here is a
long-range pressure correctjois obtained using the MIR version of the transferable potentials for phase equilibrium
method and compared with those obtained by standard EMDTraPPB model proposed by Sieppman and co-workérs.
and NEMD techniques. For the MIR method, we use a simuThe potential energy functions and the parameters used in
lation box of dimension&/2X L X L/2, whereL is the length  this model are presented in Table I. The model accounts for
of the box in they direction and is equal to 71 A. The box bond stretching, bond bending, torsional rotations and van
contains 2000 argon atoms treated as Lennard-Jdn®s der Waals interactions. The intermolecular interactions are
spheres with parameteeskg=119.8 K ando=3.41 A. The  given by a Lennard—Jones potential with a cutoff of 10 A.
LJ potential is cut off at a radius of 8. Newton’s equations For interactions between different groups a geometric com-
of motion for these molecules are integrated using the velockining rule is used, so thato =((r“o“)1’2 and e
ity Verlet algorithn? with a time step of 2.17 fs. The system = (e;;€;;)*2 Bond stretching and bond angle bending poten-
is equilibrated for 20 ps using EMD with standard PBC andtials are described with harmonic functions. A commonly
velocity scaling. The Gaussian velocity profile is then intro-used dihedral angle potential function proposed by Jorgensen
duced in the equilibrated system at tirhe 0 with the pa- and co-worker¥ is also used. Long-ranged corrections are
rametersa,=77 ms ! andby,=4.30<x 10" m~2. The length included in the calculation of pressure. A multiple time step
of the box in they direction is divided into 19 bins, each of algorithm is used to integrate the equations of motion with a

and Dy is the self-diffusivity. Thus;ymax can be quickly de-
termined from a short EMD simulation of the species unde
concern.

For the rest of this paper, we will refer to the proposed
algorithm as the momentum impulse relaxati¢hIR)

A. Argon



2084 J. Chem. Phys., Vol. 113, No. 6, 8 August 2000 Arya, Maginn, and Chang

TABLE Il. Shear viscosity @) values for argon and-butane from NEMD
simulations at different shear rateﬁz)(

o
R

Argon Butane

o
]

log ')/ (Sil) 7 (MPag tyn (9 log y (s~ 1) 7 (MPag  ty, (ps

°
R

9.66 0.2310.018 1000 10.70 0.1290.011 1600
9.96 0.236:0.013 1000 11.00 0.1300.007 1600
10.36 0.23%0.011 1000 11.30 0.1290.005 1000
10.57 0.236:0.007 1000 11.60 0.1250.005 1000
10.66 0.23%0.006 500 11.78 0.12060.003 1000
10.97 0.2280.003 500 11.90 0.1160.002 1000
11.14 0.224-0.003 500 12.00 0.1130.001 400
11.27 0.2230.002 500 12.08 0.1160.002 400
‘ . 11.36 0.216:0.002 500 12.15 0.1060.001 400
10™ 107 11.44 0.216:0.001 200 12.20 0.1040.002 400
shear rate (1/s) 1151 0.206:0.001 200 12.26 0.1020.001 400
11.56 0.20%0.002 200 12.30 0.1000.001 400

FIG. 3. Shear viscosity /) versus shear rate'yQ for argon. The open 11.62 0.199:0.001 200

squares with error bars represent the NEMD simulation results. The solid 11.66 0.195-0.001 200
line is the Carreau fit for the NEMD data. The filled squares are the sheat
viscosities obtained for different average shear rates of the Gaussian veloc-

ity profile at timet=0 using the MIR method. The filled square with error

bars, labeled “A,” refers to the shear viscosityaj=77 ms !, which has . . . .
been used for comparison with EMD and NEMD methods. The solid circletIon of the shear rate CompUted from NEMD simulations; the

with error bars represents the viscosity obtained from EMD. The two verti-'€SUlts are also tabulated in Table Il. The fluid exhibits non-

cal dotted lines show the average shear rates corresponding to the upper aNgwtonian behaviofshear thinningat high shear rates, with

lower bounds on the value @ the plateau value at low shear rates giving the Newtonian
viscosity. The solid line is the fit to the simulated values

i , using the three-parameter Carreau mbtel
time step of 1 fs for the fast modes and a large time step of

4 fs for the slower modes. The temperature is kept constant 7o
using a NoseHoover thermostat with a time constant of 0.1 7~ m
ps. The details on the equations of motion, the multiple time

step algorithm and the thermostat are given elsewlfefae ~ Where 7, is the Newtonian shear viscosity, ahdand « are

system is equilibrated for 10 ps before the Gausgiaeloc-  the other two parameters. The Newtonian viscosity obtained
ity with parameters,=90 ms ' andb,=5.0x 10"’ m~2is  from the NEMD simulations is 0.235 mPas, which is nearly

imposed. The box is again divided into 19 bins along yhe identical to that obtained using EMD. The Newtonian viscos-
length of the box. The average velocities in these bins arlly obtained by fitting the results to another mddeis
least-square fitted to a Gaussian function every time steground 7% higher, and is not reported here.
The peak velocity data are collected every time step as be- Before presenting results from application of the MIR
fore. The shear thinning behavior is also investigated in thignethod to argon, we would like to confirm that the values of
case by repeating the above procedure for larger valuag of @ andb, chosen satisfy the requirements set by Ed$),
(i.e., larger shear rates (17), and(19). First, the chosen value bf, is well above the
The NEMD and EMD runs fon-butane are performed lower limit of 4/L? (25.3X 106 m’z). The critical shear
in a cubic simulation box of edge |ength 34.6 A Containing rate at which Newtonian behavior disappears is estimated to
250 molecules. The force field, the multiple time step algo-be 16.8<10' s, this being calculated as the inverse of the
rithm, and thermostat remain the same as used in the MIRelaxation time,r, estimated from the self-diffusivity of ar-
method. The NEMD runs for the different shear rates varygon. The value of, associated with this value Of sy is
from 0.4 ns for the largest shear rate to 1.6 ns for the smallegt94 ms 1, which corresponds to its upper limit. The fluctua-
shear rate, whereas the EMD run consists of one long run dfons in thex velocity in each bin are on the order of 17
1.6 ns. ms 1, which sets the lower limit for the,. To obtain a
good estimate of the Newtonian viscosity using the above
criteria, we found the value ai,=77 ms ! to be the most
appropriate. The fluctuations are significant compared to the
We begin by reporting the EMD, NEMD, and MIR re- drift velocity, especially near the box boundaries where the
sults for shear viscosity of argon under the physical condidrift velocity is small. Therefore, we ran 20 similar runs,
tions specified earlier. The shear viscosity computed froneach starting from a different initial configuration of mol-
EMD using the Green—Kubo expression is 0.232 mPas. Thecules, and the results presented here are the averages over
atomic virial is used to calculate the three pressure termghese 20 runs. Figure 4 shows the observed decay of the peak
P.y: Pxz, andPy, at every time step and the shear viscosityvelocity with time. The decays corresponding to the shear
is obtained by averaging over the three integf&g. (1)]. viscosity obtained from the EMD and NEMD methods are
We then conducted NEMD simulations to obtain thealso plotted in the same figure for comparison. We can ob-
shear viscosity. Figure 3 shows the shear viscosity as a funserve qualitatively that the viscosity obtained from the MIR
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800 T - - - spreading profile does not “see” the box boundary through
phonon interaction and remains a Gaussian.

To determine the degree of shear thinning that occurs at
the chosen value od,, the shear rate is estimated as the

700 |

0

E average shear rate along the length of the simulation box at
g 600 timet=0 at these values af, andb, using Eq.(18). For the

s ay andbg used herey,,is equal to 2.1% 10" s™%, which
im corresponds to point A in Fig. 3. We can see that at this
-% small shear rate, the shear thinning is minimal and the ob-
a served viscosity is very close to the Newtonian viscosity.

8
o

Shear thinning can be observed if larger values of the param-
eteray are used. In Fig. 3, calculated viscosities obtained are
300 . . . . plotted as a function of thanitial average shear rate corre-
00 20 40 ime (0) &0 8o 100 sponding to each value af,. We can clearly see that ag
increasesor, as the average shear rate increpghe viscos-
lil<737- fr; Eecr?g/bof_ t;!e3 ffggsr?nz p$§kt¥¢|gc:ty vrvithr timitftohf afgton I\%Hh ity drops, thereby confirming that shear thinning does occur
obtaine?j fr?)m (;)ur éimulations. ;I'heesolli?i gu?/eer%feesrse to tr?eafi:(?ay ec((:)??le;at large values ofl,. The results _are also pre.sgnt.ed in detail
sponding to viscosity obtained from NEMD simulations. The dashed curvd Table Ill. It should be emphasized that this is just a crude
refers to the decay corresponding to viscosity obtained from EMD simulaway of showing non-Newtonian behavior, since the shear
tions. viscosity varies across the length of the simulation box and
also varies with time(viscosity is dependent on the shear
rate, which itself varies with time and position along the
method matches very well with those obtained from NEMD gjrection). Also shown in Fig. 3 as dashed lines are the shear

and EMD. The value of the shear velocity obtained is equalates corresponding to the upper and lower limitsagn We
t0 0.227 mPas. This value of viscosity is 3% lower than thal\s, conducted a series of simulation runs at a very small

obtained from NEMD and 2% lower than that obtained from, ., o ofa, (=40 ms ) to verify the accuracy of the shear

EMD simulations. Thgse d|fferences are well \.N't.hm the Sta'viscosity reported earligusing the MIR method The shear
tistical errors of the simulations, as well as within the error

. . " viscosity obtained is plotted as the filled square to the left of
associated with the fitting procedures used to extrapolate y P 9

NEMD results to the Newtonian viscosity. The statistical un-pOInt Aln F!g. 3, and it can be qbserved that the va_llue agrees
certainty of this viscosity value is estimated by dividing very well with the shear V'SCOSIt_y reported equ(polnt A)'.
these 20 runs into 3 blocks containing nearly equal numbelr’O\_Ner values ofa, were _also _tned, but the signal-to-noise
of runs, calculating the standard deviation of the averag&dtio Was too low to obtain reliable results.

viscosities in each block, and then dividing this value by 3. W& now present the results forbutane in the same
The statistical uncertainty is nearly of the same magnitude a@der as presented for the case of argon. The shear viscosity
the uncertainties obtained from the EMD and NEMD runs,obtained from the EMD technique using the Green—Kubo
as shown in Fig. 3. Thus, the MIR method gives Newtoniar€Xpression is equal to 0.135 mPas. We ran the simulation for
viscosities that are identical to those obtained from EMD andipproximately 1.6 ns, therefore resulting in an uncertainty of
NEMD. We notice that during the simulation lengtk10  approximately 5% using Eq3). Figure 5 shows the shear
ps) no boundary effects or phonon modes are observed in owiscosity as a function of the shear rate obtained from the
simulations, indicating that the Gaussian fit is good for NEMD runs. These results are also presented in Table Il. The
<t,n (wherec for argon in these conditions is 500 ms 1, solid line is the fit to the simulated values using the Carreau
thereforet,,~14 p9, viz, L is sufficiently large that the model given by Eq(20). We obtained a shear viscosity of

TABLE lll. The MIR results: Shear viscosityr(), average initial shear raté/g\,g) and number of runsN,,,)

for different values ofy,. The statistical uncertaintigsot reported for all values aiy) in the tabulated shear
viscosities decrease as larger valuesgére usedN,,.srefers to the number of simulation runs conducted and
averaged over to obtain the shear viscosity.

Argon Butane
ap log :Yavg n =N log :Yavg 7
(ms™?) (s (mPa 3 Nruns (ms™) (s (mPa g Nruns

39 10.037 0.235 40 90 10.316 0.1320.01 20

77 10.338 0.22%0.009 20 200 10.663 0.1323 20
154 10.639 0.241 10 500 11.061 0.1320 10
308 10.940 0.238 5 1000 11.360 0.1288 5
770 11.338 0.210 3 2000 11.662 0.1125 5

1540 11.639 0.177 2
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FIG. 5. Shear viscosity #) versus shear rateyj for butane. The open FIG. 6. Decay of the Gaussian peak velocity with time figoutane with
squares with error bars represent the NEMD simulation results. The solidi,=90 ms* and by=5.0x 10" m~2. The triangles represent the actual
line is the Carreau fit for the NEMD data. The filled squares are the sheadecay obtained from our simulations. The solid curve refers to the decay
viscosities obtained for different average shear rates of the Gaussian velocerresponding to viscosity obtained from NEMD simulations. The dashed
ity profile at timet=0. The filled square with error bars, labeled “A,” refers curve refers to the decay corresponding to viscosity obtained from EMD
to the shear viscosity aty=90 ms * which has been used for comparison simulations.

with EMD and NEMD methods. The solid circle with error bars represents

the viscosity obtained from EMD. The two vertical dotted lines show the

average shear rates corresponding to the upper and lower bounds on the

value ofag. in Table IIl. The upper and lower bounds on the valueapf

are shown in the same figure as dashed, vertical lines.
The main advantage of the MIR method for calculating
shear viscosity of fluids is that the lengths of the simulations
0.130 mPas from the fit, in good agreement with EMD re-gre significantly shorter than those corresponding to the
sults. EMD or NEMD methodgby a factor of~100). Although a
A similar analysis as before is done to obtain estimatesarger simulation box is required to eliminate edge effects
of the upper and lower bounds of the MIR velocity profile and obtain a well-resolved Gaussian profile, the computa-
parameters The lower bound on the valuebgfis 5.3  tional savings are still on the order of 20-30 times. It is
X10'*m~? as calculated from Eq16), which is well below  \worth mentioning that large system sizes are typically not the
the value of 5<10'" m™? chosen here. The longest relax- piggest problem in MD, since parallelization strategies such
ation time in butane is 1.37 ps, which is the rotational relax-as domain decomposition become more effective for larger
ation time calculated from an EMD simulation. Therefore, systems. What makes EMD and NEMD methods so compu-
Ymax=7.3X 10 s, which corresponds to the upper bound tationally demanding is the long simulation times that are
value of 3140 ms? for a,. The lower bound fol, is 28  required, particularly for computing collective transport
ms 1, corresponding to the thermal fluctuations. Again, theproperties such as viscosity. The MIR method is desirable in
chosen value of, (=90 ms !) to obtain the Newtonian this regard, because although it requires large system sizes,
viscosity is found to be very appropriate. Twenty simulationsfairly short simulation lengths are required, making it an eas-
starting from different initial configurations were conductedily parallelizable technique. In this work we have not tried to
and averaged to improve the signal-to-noise ratio. Figure thvestigate if accurate shear viscosities can be obtained with
shows the average decay of the peak velocity for the 20 runsystems smaller than those used in this work. Reducing the
The value of shear viscosity obtained from the MIR methodsystem size would lead to highly fluctuating drift velocities
is equal to 0.132 mPas, which is about 2% higher than thosm the bins, and hence a very noisy Gaussian peak velocity.
obtained from EMD and NEMD simulations. Again, these This means that large values af would have to be used,
results are within the statistical accuracy of the EMD andwhich leads to shear thinning. On the other hand, the use of
NEMD results, indicating that the MIR method yields iden- a larger system would enable us to use small values,of
tical viscosities. No boundary effects are noticed as the simuand hence obtain more accurate estimates of the Newtonian
lation lengtht= 10 ps is about the same g=8.5 ps(with shear viscosity, but the CPU time would be longer.
c~950 ms'1). Point A in Fig. 5 corresponds to the average Table IV summarizes the computational advantages of
shear rate at the beginning of the run at the viscosity justising the method proposed here over conventional EMD and
obtained. We can again see that at this low shear rate, shedEMD methods. We have only used simple “independent
thinning is negligible and the observed viscosity is very closeun” parallel computation for the 20 runs required by our
to the Newtonian viscosity. A similar analysis, as in the casamethodology and the multiple runs required for NEMD at
of argon, is done to obtain the approximate shear rate depenifferent shear rates. Therefore, the wall clock times required
dence of the viscosity. The viscosities obtained for largeiby the MIR method are smaller by a factor of 20 than the
values ofa, from the MIR method are plotted as a function total CPU times required. This is not true for the NEMD
of the average shear rates in Fig. 5. The results are tabulatsémulations, as the runs are not equal in length. Therefore,
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TABLE IV. Comparison of the EMD, NEMD, and MIR methods of obtaining Newtonian shear viscosity in
terms of the computational requirements, system sizes, and simulation lengths.

Argon Butane
EMD NEMD MIR EMD NEMD MIR
No. of molecules/atoms 1000 1000 2000 250 250 1000
No. of runs 1 14 20 1 12 20
Simulation length (ps) 1000 1000 10 1600 1600 10
Total CPU timé& (hr9) 21 170 12 19 125 25
Wall clock timé (hrs) 21 23 0.6 19 22 1.3

#The longest of the multiple NEMD runs is tabulated.

PAll simulations performed on SunSPARC ULTRA 5 workstations. The total CPU time being calculated as the
sum of the individual CPU times of each run in case of multiple runs.

“The wall clock time of the NEMD run is greater than that of an EMD run for the same system size and
simulation length because the neighbor list used is not as efficient for NEMD as it is for EMD.

the wall clock time required is limited by the longest run, bons, where current EMD and NEMD methods require pro-
invariably the run at the lowest shear rate. It should be emhibitively large times to determine the shear viscosity. Since
phasized that the purpose of this paper is not to compare thtbese molecules have high viscosities the Gaussian velocity
EMD and NEMD methods, and that a more exhaustive comprofile in our methodology would decay quite rapidly, thus
parison might yield slightly different performance results for requiring very short simulation lengths. Though these mol-
these methods. What the present analysis shows is that tleeules would shear thin at very small shear rates, the thermal
MIR method results in a significant reduction in computa-fluctuations would also be much smaller, allowing us to
tional time over the EMD and NEMD methods while yield- simulate in the small shear rate regions, i.e., small values of
ing a high degree of accuracy. ag.
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