
Appendix 1: Internucleosomal Interaction Pattern

We sketch here how the(i, i± 4) internucleosomal interaction pattern follows from the mean angle
of approximately90◦ subtended between nucleosome triplets within our oligonucleosomes using a
highly simplified model of chromatin.

Fig. 1.1:   Simplified model of chromatin illus-
trating the change in internucleosomal interaction
pattern from a(i, i±4) to a(i, i±3) when the mean
of the input angle distribution changes from90◦ to
60◦.
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Fig. 1.2:   Distribution of angle defined by con-
secutive nucleosome triplets. The distribution has
been averaged over the 22 angles in a 24-unit
oligonucleosome. The mean angle of92◦ is shown
as the vertical red dashed line, and the Gaussian fit
to  the data is shown by the dotted-dashed blue
curve (standard deviationσ = 28◦).

Consider each nucleosome core as a point
object connected by straight linker DNAs.
We impose only two constraints: (i) the an-
gle between consecutive linker DNAs obeys
a Gaussian distribution with a certain mean
and variance, and (ii) three consecutive linker
DNAs have a torsion angle in the range
[−π/2, π/2] to promote a helical nucleosome
arrangement (see Fig. 1.1). We generate a
chromatin fiber with a given number of nu-
cleosomesN by successively addingN − 1
linker DNAs in turn such that the angle be-
tween consecutive linker DNAs is selected
from  a Gaussian distribution  that  fits the
angle distribution obtained from our Monte
Carlo simulations (Fig. 1.2). Specifically, we
employ a Gaussian distribution with a mean
of 92◦ and a standard deviationσ = 28◦.

We now generate one million configura-
tions of a 12-nucleosome fiber via the above
semirandom walk and then compute his-
tograms of internucleosomal distances for
nucleosomesi and i ± k at different values
of k. We find that the nucleosomei remains
closest to nucleosomesi ± 4 (k = 4 curve
in Fig. 1.3) when the angle distribution has
a mean close to90◦. When the mean an-
gle of the distribution is60◦, the interaction
pattern changes such that the closest internu-
cleosomal distance are now between nucleo-
somei andi ± 3. Changing the mean angle
to 0◦ makes every alternate nucleosome close
to each other, as expected.

Recall that nucleosomal DNA winds 1.75
times around the nucleosome. This corre-
sponds to a90◦ angle subtended between the
entry/exit points of  linker DNA in  our flexible-tail model of oligonucleosomes  (5–7). This im-
plies that consecutive nucleosome triplets should subtend an angle of90◦ if all interactions between
linker DNAs, nucleosome cores, and histone tails are zeroed out. Remarkably, this angle remains
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Fig. 1.3:    Frequency histogram of internucleo-
somal distancesr (normalized byL, the length of
linker DNA) of nucleosome pairsi andi ± k for
k = 2, · · · , 7. The histogram has been obtained
for θ = 92◦ andσ = 28◦.

close to90◦ even in the presence of energetic in-
teractions in moderately folded chromatin with-
out linker histones. This is because the elec-
trostatic repulsion between the entering/exiting
linker DNAs (which tends to expand the mean
angle between consecutive nucleosomes) is ex-
actly counterbalanced by the attractive interac-
tions between nucleosomes mediated through
the histone tails. The cumulative effect is to
maintain the nucleosome triplet angle close to
90◦. We speculate that, in highly compact chro-
matin containing linker histones, the attractive
interactions between nucleosomes mediated via
the histone tails will dominate the repulsive in-
teractions between linker DNAs and cause the
mean angle to decrease from90◦, leading to a
different interaction pattern.
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Appendix 2: Tail Regrowth—Configurational Bias Monte Carlo

For efficient sampling of histone tail configurations, we employ the configurational bias Monte
Carlo (CBMC) method (1–3). This method randomly selects a histone tail and regrows it bead by
bead, beginning with the tail bead attached to the nucleosome core, using the Rosenbluth scheme
(4).

In the first step of tail regrowth, for the selected tail withN beads,Nt trial positions of the first
bead denoted byr1,j, wherej = 1, · · · , Nt, are generated. Each positionr1,j is then determined
using

r1,j = r1,f + b1,j, (1)

wherer1,f is the attachment point of the tail bead on the nucleosome core, andb1,j is a randomly
oriented vector whose length is sampled from a Boltzmann distribution corresponding to the poten-
tial  energy of the spring attaching the tail bead to the core (seeref. 5 for histone tail model). One
trial positions is selected with a probability proportional to its Boltzmann weight, i.e.,

P (r1,s) =
exp(−βU ext

s )

w1

, w1 =
Nt∑
j=1

exp(−βU ext
j ), (2)

whereU ext
j is the “external” energy of interaction of the tail bead at positionrj with the rest of the

oligonucleosome,β is the reciprocal temperature (1/kBT ), andw1 is the Rosenbluth factor for the
first bead.

Similarly, the position of the second tail bead is obtained by selecting one of theNt trial positions
r2,j from its Boltzmann’s weights, where

r2,j = r1,s + b2,j, (3)

whereb2,j is a randomly oriented vector whose length is sampled from a Boltzmann distribution
corresponding to the stretching energy of the bond. The Rosenbluth factor for this bead,w2, is
recorded. Successive tail beadsk = 3, · · · , N are inserted similarly, but the generated trial bond
vectorsbk,j are oriented according to the Boltzmann distribution associated with the bending energy
of the bond instead of randomly. The Rosenbluth factors corresponding to each bead insertion,wk,
are recorded.

Once all the beads have been succesfully inserted, the overall Rosenbluth factor for growing the
entire chain is calculated:Wnew =

∏N
i=1 wi. Using a similar procedure as described above, the

old histone tail configuration isretracedand its Rosenbluth factor,Wold, computed. Note that the
selected trial position for beadk, rk,i, is always the old tail position here. The generated histone
chain is then accepted with a probability given by

Pacc = min[1,Wnew/Wold]. (4)

For all simulations, we chooseNt = 4 trials and obtain acceptance ratios of about0.3 (averaged
over all tails).
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Appendix 3: End-Transfer Configurational Bias Monte Carlo

We have also developed a new method based on the configurational bias Monte Carlo to sample
both bonded and nonbonded degrees of freedom of long and complex biopolymers that contain a
repeating motif. We call this methodend-transfer configurational bias MC(EtCBMC). We describe
briefly below the method’s main concept and its application to the thermodynamic sampling of
oligonucleosomes.

Figure 3.1: Application of EtCBMC method on
a tri-nucleosome, highlighting both itsE → F
andF → E features. The nucleosome cores are
depicted as cylinders and only one histone tail
is featured for convenience. The portions of the
tri-nucleosome shown in grey are regions conserved
during the EtCBMC move while the red and blue
shaded regions denote the end and front regions.

For our oligonucleosomes, the repeating
motif is a single nucleosome core plus its  10
histone tails and six linker beads. We focus
first on the two repeating motifs at the ends
of the oligonucleosome. In Fig. 3.1, the two
motifs are colored blue and red. The former
is denoted as “front” (F) motif, and the lat-
ter is the “end” (E) motif. The method se-
lects one of these motifs with a probability
1/2 and transfers it to the other end with a
new configuration. The entire motif is re-
grown efficiently using the configurational
bias approach described inAppendix 2, where
Rosenbluth weights of the regrown motif at
one end of the oligonucleosome and of the
“old” motif at the opposite end need to be
computed. The end transfer is then accepted
with a probability

Pacc = min[1,Wnew/Wold], (5)

whereWnew andWold are the cumulative Rosenbluth weights of regrowing and retracing the histone
tails, linker DNA beads, and the nucleosome core of the new and old motifs, respectively. To ensure
microscopic reversibility, both the front-to-end (F → E) and end-to-front (E → F ) moves are
attempted with equal probabilities (see Fig. 3.1).

The primary difference between our approach and the traditional CBMC approach is that the
motif at one end of the oligonucleosome is regrown at the opposite end rather than at the same end,
as in the CBMC approach. This allows an efficient sampling of the entire oligonucleosome (once
a sufficient number ofF → E andE → F moves attempted have been accepted). Our method
yields an acceptance ratio of 0.1% for high salt conditions, but considerably lower acceptance ratios
at low salt conditions where the electrostatic energy landscape is much more rugged. Therefore, we
employ the EtCBMC method only for sampling oligonucleosomes at 0.2 M salt. We useNt = 10
trial positions for nucleosome core/DNA linker bead insertion andNt = 4 for histone tail bead
insertion.
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