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The energetic and entropic interactions governing the attraction between like-charged colloidal particles grafted
with oppositely charged polyelectrolyte chains in a monovalent electrolyte are investigated computationally.
We employ coarse-grained models of the colloids with varying surface and polyelectrolyte charges and Monte
Carlo simulations to compute the potential of mean force between two colloidal particles as a function of
their separation distance. By categorizing the potentials as attractive or purely repulsive, we obtain the extent
and location of the attractive-force regime within the two-dimensional parameter space comprised of the
colloid surface and polyelectrolyte charge. The attractive regime is found to occupy the inside of a hyperbola
in this charge space, whose shape and size is determined by a complex interplay between energetic and
entropic interactions. In particular, we find that the strength of attraction at short distances is governed by a
balance between favorable energetic and entropic terms arising from polymer-bridging interactions, unfavorable
energies arising from the mutual repulsion of the colloid surfaces and polyelectrolyte chains, and unfavorable
entropies arising from the overlap and crowding effects of chains confined between the colloid surfaces. A
phenomenological model is proposed to explain the hyperbolic shape of the attractive regime and make useful
predictions about changes in its shape and location for conditions not investigated in this study.

1. Introduction

Polyelectrolyte-grafted colloidal particles in which the poly-
electrolyte chains and the colloid surface carry charges of
opposite signs are important systems to study because of their
numerous industrial applications' and interesting physical
properties. A particularly interesting property is that these
colloidal particles could exhibit a mutual attraction under certain
conditions, despite the likeness in their overall charge, resulting
in their phase separation or flocculation.>® Perhaps the best
example of such an attraction occurs inside our cells, where
histone protein—DNA complexes called nucleosomes containing
a highly negatively charged core (colloid) and several positively
charged floppy histone domains extending outward (polyelec-
trolyte chains) exhibit an overall attractive interaction despite
their overall strong negative charge.*”’

The primary driving force for this attraction is the so-called
“polymer-bridging” effect, where polyelectrolyte chains from
one colloidal particle get adsorbed onto the oppositely charged
surface of another particle to form an attractive elastic bridge
that can sometimes surpass the mutual repulsion between the
chains and the colloid surfaces. Correlations between charges
on opposite particles, analogous to correlations between elec-
trons in van der Waals interactions, could also result in a net
attraction between colloidal particles. However this attraction
is expected to be weaker and more short-ranged compared to
that from polymer-bridging attraction.” Polymer-bridging at-
traction is also observed between charged surfaces when the
polyelectrolyte chains are mobile in solution (not grafted). In
fact, the first polymer-bridging hypothesis was proposed to
explain flocculation observed in such systems.® Since then,
several theoretical studies have examined this attraction in more
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detail that generally fall into two main categories: mean-field
theory and molecular simulations.

In the mean-field approach,”! the many-body interactions
between chains, counterions, and surfaces are replaced by a
“mean” field and the resulting equations are solved self-
consistently to yield the spatially dependent polymer density
that minimizes the total free energy. The first evidence'' that
polymer bridging could lead to an attraction came from the
application of such a theory to a single charged polymer
confined between charged plates. Since then, this approach has
been extended to treat multiple chains and other effects such
as excluded volume,'>!3 steric and van der Waals interactions,'>'*
grafted polyelectrolytes,'>'¢ spherical and cylindrical geometries, >
and multibody systems.!” An alternative mean-field theory based
on the extension of the Poisson—Boltzmann (PB) equation to
cases where the mobile point-charge counterions are now
connected by bonds to represent the polyelectrolyte was also
proposed to explain the origin of bridging attraction.'® This
theory has also been extended to investigate polyelectrolyte-
grafted surfaces.!®

In molecular simulations, Monte Carlo (MC) and molecular
dynamics (MD) methods are used to generate Boltzmann-
distributed configurations of the colloidal particles whose intra-
and intermolecular intractions are treated via atomistic or coarse-
grained force fields. Akesson et al.'® used MC simulations to
provide evidence for attraction between like-charged surfaces
confining short mobile polyelectrolyte chains treated as point
charges connected by harmonic springs. Other studies have also
demonstrated attraction between like-charged surfaces grafted
with polyelectrolyte chains.'® A similar attraction was observed
when the polyelectrolyte chains grafted on one of the surfaces
were removed and replaced by mobile ions of the same charge.?
In all of these studies, the medium was free of counterions.
Other simulations on like-charged spherical colloids carrying
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adsorbed polyelectrolytes in an electrolyte also revealed attrac-
tion despite electrostatic screening, albeit at a reduced strength.?!
Some simulation studies have also examined the effect of chain
length?? and flexibility?® on the attraction strength. A number
of simulation studies have also specifically addressed the
attraction between nucleosome core particles and shown that
they aggregate in monovalent and divalent salt** and that
polymer-bridging interactions are the main contributor to this
attraction.”

Though the above studies have provided many important
insights into attraction in polyelectrolyte-grafted colloids, several
aspects of it remain unresolved. One important issue that has
not been addressed in detail is the dependence of the attractive
force on the colloid surface and polyelectrolyte charges. Previous
studies have examined very specific systems and a narrow range
of surface and polyelectrolyte charge values, often examining
the effect of one charge keeping the other fixed, leading to
conflicting results. For example, Miklavic et al.!” used PB theory
and MC simulations to show that the attraction between two
polyelectrolyte-grafted surfaces for an overall electroneutral
system increases monotonically with surface charge. Huang and
Ruckenstein'* used a mean-field theory for polyelectrolyte
coated surfaces to show that the attraction increases with the
polyelectrolyte charge. On the other hand, Granfeldt et al.,?!
using MC simulations, and Podgornik,'?> using a mean-field
theory, observed a nonmonotonic dependence of the attractive
force with the surface charge for adsorbed polyelectrolyte on
charged surfaces. Evidently, the attractive force between poly-
electrolyte-grafted colloids has a nontrivial dependence on the
surface and polyelectrolyte charges, and a more careful exami-
nation of this is required.

Another unresolved issue concerns the contribution of energy
and entropy to the overall free energy of interaction between
two colloidal particles, which could explain the complex charge
dependence described above. It is anticipated that a loss in
energy should accompany polymer bridging. However, it is not
so clear if polymer bridging could also contribute an entropic
driving force for attraction. One would expect that the strong
adsorption of the grafted polyelectrolyte chain onto the apposing
surface would restrict its freedom, thus contributing an unfavor-
able entropy term to the overall free energy. However, the
bridging interactions could also lead to a favorable entropic gain.
Consider a polyelectrolyte chain strongly adsorbed on its own
surface. The presence of another attractive surface nearby could
promote the chain’s detachment, allowing it to attach to both
surfaces. We expect that such effects, as well as repulsion from
the overlap of polyelectrolyte chains, are strongly dependent
on the chain stiffness and length, and on the surface and
polyelectrolyte charges. A systematic investigation of such an
interplay between various energetic and entropic interactions
has not been carried out so far.

Here, we use molecular simulations to provide key insights
about the attraction between polyelectrolyte-grafted colloids and
its dependence on surface and polyelectrolyte charges in terms
of detailed energetics. Specifically, we employ coarse-grained
models and MC simulations to compute the potential of mean
force (PMF) between two colloidal particles as a function of
their separation distance. By categorizing the PMFs as attractive
or repulsive, we determine the extent of the attractive-force
regime within a broad two-dimensional space of surface and
polyelectrolyte charges. By further decomposing the PMF into
energetic and entropic contributions, we quantify their role in
the observed attraction between polyelectrolyte-grafted colloids
and the shape of the attractive regime in the charge space. The
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Figure 1. Coarse-grained model of a polyelectrolyte-grafted colloidal
particle. The polyelectrolyte chain beads are shown in blue, and the
surface charges are shown in red. The excluded volumes associated
with the charges are not drawn to scale.

methodological framework introduced here could be used to
investigate the effect of other important parameters such as the
grafting density, length, and flexibility of the polyelectrolyte
chains on colloid attraction, and to study other related systems.

2. Methods

2.1. Coarse-Grained Modeling of Colloids. The polyelec-
trolyte-grafted colloids are treated using the coarse-grained
model in Figure 1. The colloid is treated as a sphere of radius
R carrying n. = 250 charges, each of magnitude g. > 0, scattered
uniformly on the surface using the Marsaglia algorithm.?> Hence,
the colloid surface carries a total charge of Q. = n.q.. Such a
discrete representation of surface charge over a continuous one
using surface densities allows us to simultaneously treat charge
and excluded volume effects. The colloid is also grafted with
n, = 26 polyelectrolyte chains carrying the opposite charge.
Each chain is modeled as a chain of N = 8 coarse-grained beads,
where each bead carries a charge of g, < 0. The total charge
carried by the grafted chains is therefore given by O, = Nn,q,.
The surface charges are rigidly attached to the colloid, while
the polyelectrolyte chains are modeled flexibly.

The total energy of interaction between two colloidal particles,
U, 1s given by the sum of electrostatic (U,;), excluded volume
(U.y), and intramolecular bonded energies (Uyya):

U,

ot Uel + Uev + Uimra (1)
We consider that the particles are present in a 1:1 electrolyte
(monovalent salt). Therefore, all electrostatic interactions are
treated using the Debye—Hiickel formulation,?® i.e., charges g;
and ¢g; separated by a distance r; interact through the
Debye—Hiickel potential:

U =Y, _ 94

exp(—«r;) 2)
o Ameegr J

where the sum i, j runs over all surface and polyelectrolyte
charges, & is the permittivity of the vacuum, ¢ is the dielectric
constant of water. The inverse Debye length « is given by (2¢’cy/
eeoksT)"?, where e is the electronic charge, kg is the Boltzmann
constant, 7 is the temperature, and c; is the salt concentration.
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TABLE 1: Parameter Values for Our Coarse-Grained Model of Grafted Colloid

parameter description value

R radius of colloid 10 nm

n, number of polyelectrolyte chains attached to core 26

N number of beads composing each polyelectrolyte chain 8

ne number of charges on colloid surface 250

lo equilibrium segment length of polymer 1 nm

0 equilibrium angle between three chain beads 180°

ks stretching constant of chains 10 kcal/mol/nm?
ko bending constant of chains 0.1 kcal/mol/rad®
e LJ energy parameter for all excluded volume interactions 0.1 kcal/mol

Occ LJ size parameter for surface charge interactions 1.2 nm

O LJ size parameter for chain bead/surface charge interactions 1.8 nm

Oy LJ size parameter for chain bead interactions 1.8 nm

e dielectric constant of solvent 80

Cs electrolyte concentration 22 mM

K Inverse Debye length 0.5 nm™!

T temperature 293.15 K

Charges on the same surface and beads on the same chain i
and j closer than three beads (j — i < 3) do not interact with
each other.

Excluded volume interactions between colloid charges and
polyelectrolyte beads are treated using the Lennard-Jones
potential, as given by

o..\12 o..\0
RN
y

ij>i ij

where the sum i, j runs over all surface charges and polyelec-
trolyte beads, oj; is the size parameter, and ¢; is the well-depth
of the potential. Similar to the electrostatic interactions, charges
on the same surface and beads on the same chain i and j closer
than three beads do not interact with each other via excluded
volume interactions.

Each polyelectrolyte chain is assigned an intramolecular force
field comprised of harmonic stretching and bending terms. In
addition, a harmonic spring is used to attach the chains to the
colloid surface at specific points r;, to yield a uniformly grafted
colloid (see Figure 1). The total intramolecular bonded energy
for a single chain is therefore given by

N—1
— ol Dkl — )
j=1

Uinira(d) = 2 (kylr;y

N—-2
D ko0, — 0D (@)
j=1

where the sum 7 runs over all chains in the two-particle system,
ks and kg are the stretching and bending constants, respectively,
r; is the position of the bead attached to the surface, [ is the
bond length between beads j and j + 1, 0; is the bond angle
between beads j, j + 1, and j + 1, and [, and 6, are the
equilibrium bond lengths and angles.

The parameters related to this model are provided in Table
1. They have been chosen to be as realistic as possible, keeping
computational demands in mind. In particular, €; describing the
depth of the van der Waals energy well has been kept small
(<kgT) so that it does not affect the final attraction between
the two colloidal particles, as the main focus of this article is
on electrostatic interactions. Also, we have fixed the salt

concentration ¢, to 22 mM so that it yields a characteristic Debye
layer of thickness ~2 nm, on the order of the dimensions of
the chains.

2.2. Potential of Mean Force Calculations. To determine
the “effective” interaction between two colloidal particles, we
compute the potential of mean force (PMF) as a function of
their separation distance d defined as the distance between the
colloid centers. The PMF is essentially a free energy of the
system where the two particles are constrained to be a specific
distance apart but are free to sample their remaining degrees of
freedom such as colloid angular orientation and chain config-
uration. Hence, the PMF is a more accurate indicator of effective
interaction between particles, as it contains contributions from
both the energy and entropy. In this study, we compute the PMF
by first computing the average force (F(d)) experienced by two
particles in the direction along the particle centers through proper
averaging over the remaining degrees of freedom:

AU, (d, Q)
(Fay= [..[ _(T) exp(— U, (d, @)/k;T) dQ

(&)

where Uy, is the total energy computed from eqs 1—4 and the
integral is computed over all degrees of freedom represented
collectively by €.

To compute (F(d)), we generate Boltzmann-distributed
configurations of the two colloids subject to the distance
constraint using a Monte Carlo approach consisting of two
moves: rotation and chain regrowth. In the rotation move, one
of the two colloidal particles is randomly chosen and rotated
about a randomly picked axis. The colloid particle along with
the grafted polyelectrolyte chains is then rotated by a random
angle A6 sampled from a uniform distribution —45° < Af <
45°. The move is accepted using the standard Metropolis
acceptance criterion:

Pace = minfl1, eXp(—AUtot/kBT)] (6)

where AU, is the change in the total energy upon rotation. In
the regrowth move, a polyelectrolyte chain is randomly chosen
and regrown from scratch using the configurational bias Monte
Carlo approach.”’~? The new regrown chain is then accepted
with the Rosenbluth acceptance criterion
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. 1 WﬂeW 7

Pace — Munf 1, Wold ( )
where W,q and W, are the Rosenbluth weights corresponding
to deleting the chain and regrowing a new one, respectively.
Both moves are fairly standard and satisfy the detailed-balance
condition.

The PMF, A(d), is computed by integrating the computed
force as follows:

AW = — [(F@E)de ®)

Note that the PMF is denoted by the symbol A, as it is essentially
a Hemholtz free energy. A(d) can be further divided into
energetic and entropic contributions to determine their relative
importance in governing colloidal interactions. The energetic
component can be computed as

Ud) = [ .. [Uy(d Q) exp(~U,(d, Q)/kyT) dQ
©)

Note that the same Monte Carlo simulation used for computing
the averaged force and PMF can be used for computing U(d).
The entropic contribution S(d) can then be computed as follows:

_ U — Ad) 10)

S(d) -

The PMFs have been computed for different values of surface
and polyelectrolyte charges by changing g. and g, independently
in the range 0—=2.4¢. Note that many of these combinations
do not yield overall electroneutral systems. Other parameters
such as colloid size, chain length, temperature, and salt
concentration are kept constant throughout this study (see Table
1 for a complete list). An exhaustive study of the role of all
parameters is beyond the scope of this study due to the
computational demands; the current study alone involved about
10 000 h of CPU time on 3.2 GHz Intel EM64T processors.
However, we believe that the main conclusions drawn from this
restricted parameter space are sufficiently general.

3. Results and Discussion

3.1. Potential of Mean Forces. We have used the above MC
methodology to compute the PMF between two colloidal
particles for different combinations of surface and polyelectro-
lyte charges. Figure 2 shows four representative PMF profiles
plotted for different colloid surface and polyelectrolyte charge
values: (qc, gp) = (0.5¢, —0.5¢e), (1.0e, —1.0e), (1.5¢, —1.5¢),
and (1.0e, —2.5¢). The force profile (F(d)) from which the PMFs
were computed are shown for reference. We have also plotted
the relative contributions of energy U(d) — U(eo) and entropy
TS(d). Note that the energetic contribution to the PMF has been
plotted as the total energy of the system relative to its value
when the two colloidal particles are an infinite distance apart.
The latter is calculated separately as 2 times the total energy of
a single isolated colloidal particle.

The PMF profiles exhibit a strong dependence on both the
surface and polyelectrolyte charges. Interestingly, some PMF
profiles become negative within a range of separation distances
(Figure 2b,c), suggesting an effective attraction between the
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Figure 2. Potential of mean force (A) (black circes), total energy (U)
(red squares), and entropy (7S) (blue triangles) profiles at different
colloid surface and polyelectrolyte charge combinations (g, gp): (a)
(0.5¢, —0.5¢), (b) (le, —1le), (c) (1.5¢, —1.5¢), and (d) (le, —2.5¢).
Also shown are the force profiles (F) (dashed magenta lines).

colloidal particles, while others remain positive over the entire
separation distance range (Figure 2a,d), indicating repulsion.
Interestingly, in some PMFs, the entropy term contributes more
than the energy toward the net attraction (see, for example,
Figure 2c). The PMF profiles also exhibit common features
irrespective of the two charges such as the sharp repulsion
observed at short distances and the slowly decaying repulsion
at large separation distances. The former arises from the chain
overlap (to be discussed in more detail later) and overlap in the
excluded volume of surface charges, and the long-range
repulsion arises from the colloidal particles behaving like point
charges of the same sign and magnitude at large separation
distances.

3.2. Hyperbolic Attractive Regime. To determine the extent
of the observed attraction in g.—¢q, charge space, we have
categorized the PMFs as attractive when they fall negative,
usually for a short range of distances only (e.g., Figure 2b,c),
and repulsive when the entire PMF is positive (e.g., Figure 2a,d).
Figure 3a shows the attractive and repulsive regimes for our
colloidal system. The dashed curve represents a hypothetical
boundary separating the two regimes. Intriguingly, the boundary
exhibits a hyperbolic shape, with the attractive regime occupying
the inner portion of the hyperbola with the repulsive regime on
the outside. The hyperbola does not extend all the way to the
origin, as there appears to be some repulsion at small g. and
¢p- The hyperbola also seems to be symmetrically arranged on
the g.—g, plane; i.e., its major axis tilts close to the electoneu-
trality condition indicated by the dashed line in the figure. We
have explored other chain flexibilities and grafting densities,
and our preliminary results suggest that the hyperbolic shape
of the boundary may be universal.

The computed PMF profiles can also be used to estimate the
stability of the colloids under dilute conditions. Essentially, this
involves computation of the osmotic second virial coefficient
via the McMillan—Mayer expression:*

B, =27 [ [1 = exp(=A(N/kgD1* dr (1)

where r is the separation distance between two colloidal
particles. A positive value of B, is generally indicative of a stable
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Figure 3. (a) Attractive and repulsive regimes for polyelectrolyte-
grafted colloids in the g.—¢, space. Blue circles and red triangles
represent attractive and purely repulsive PMFs at the specified surface
and polyelectrolyte charges, respectively. The dashed black line
represents the hypothetical boundary between the attractive and
repulsive regimes. The dot—dashed line corresponds to the rough
stability limit obtained from the second virial coefficient. The green
dashed line represents the electroneutrality condition. (b—d) Contour
plots for the change in (b) free energy (AA), (c) energy (AU), and (d)
entropy (—7TAS) when two colloidal particles are brought from infinity
(d = o) to a separation distance of d = 22 nm in the g.—g, space.
Values for a few selected contours are shown in each plot. The red
dashed lines in part ¢ correspond to the upper and lower bound of the
negative-energy region predicted by our phenomenological model (eq
14).

system, while negative values generally imply susceptibility to
phase separation and crystallization. We have computed B, using
the above equation for all charge conditions and plotted the
boundary between positive and negative values of B, as the
dot—dashed curve (inner hyperbola) in Figure 3a. This boundary
represents a more stringent condition for attraction between
colloids, as it accounts for thermal effects; i.e., the PMF does
not need to be necessarily positive for the colloids to be stable,
as very weakly attractive PMFs can also be stable under thermal
fluctuations.

To understand the origin of attraction between colloidal
particles and the mechanisms that give rise to the hyperbolic
shape of the attractive regime, we have decomposed the PMF
into energetic and entropic contributions using eqs 9 and 10. In
Figure 3b—d, we have plotted the contour maps of the computed
PMF, and energetic and entropic contributions in the g.—¢,
space using the MATLAB routine contourf. We have chosen
these quantities to be computed at a colloid separation distance
of d = 22 nm at which several PMFs exhibit a minima (see
Figure 2). Note that the contour lines representing the zero PMF
value in Figure 3b may be slightly different from the
attractive—repulsive boundary plotted in Figure 3a, as the former
only consider the value of the PMF at d = 22 nm while the
latter searches along the entire range d > 20 nm to assess if the
PMF is attractive or repulsive.

Clearly, the attraction between the colloids is dictated by a
complex interplay between energy and entropy, each of which
depends strongly on the surface and polyelectrolyte charge.
Next, we examine these two components of the total free energy
in more detail and provide phenomelogical models to explain
their charge dependence and contribution to this net attraction.
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Figure 4. Linear regression of various energetic components with
respect to surface and polyelectrolyte charge: (a) core—core repulsion
(E.) with g% (b) polyelectrolyte—polyelectrolyte repulsion (Ej,) with
gy (c) surface—polyelectrolyte attraction (E,) with ¢.g,. The values
of proportionality constants (line slopes) obtained from the regression
are also provided.

3.3. Energetic Contribution to Attraction. The energy
contours in Figure 3c indicate that the favorable (negative)
energies fall within a triangular region in the g.—¢, space whose
lower and upper bounds converge at the origin (g. = g, = 0).
In particular, the most negative energies occur at (g, ¢p) = (2.5¢,
—2.5¢) (AU ~ —6 kcal/mol) and some of the most unfavorable
energies occur at (¢., ¢,) = (2.5¢, 0e) (AU ~ 24 kcal/mol) and
(qe> qp) = (Oe, —2.5¢) (AU = 15 kcal/mol). This behavior may
be explained by considering that the total energy of the system
is given by the sum of electrostatic energy, chain stretching
and bending energy, and van der Waals energy. As the particles
are brought closer, the net change in the energy, AU, is
dominated by an increase in the surface/surface and chain/chain
electrostatic repulsion and an increase in the surface/chain
electrostatic attraction. The chain stretching and bending and
van der Waals energies do not change significantly until the
surface charges on apposing colloids begin to overlap (i.e., d
— 2R). When gl > Igyl or lgl < lIg,l, the repulsion terms
dominate the attractive interactions, making the total energy
positive. As g. and g, become comparable, the attractive terms
begin to dominate, causing the total energy to be negative and
attractive.

A rough model may be formulated to capture this behavior.
For this purpose, we have computed for different combinations
of g. and g, the repulsive energy between the two colloid
surfaces (E..) and between the two grafted polyelectrolyte layers
(Epp) and the attractive energy between the surface and poly-
electrolyte chains (Ep). In Figure 4, we have plotted E, E,
and E,, as a function of ¢.%, ¢,%, and lg.q,l, respectively. Though
the electrostatic energy between two point charges is directly
proportional to the product of the two charges, we do not expect
the proportionality to hold for the ensemble averages E,, Ecp,
and E,, due to the nature of the Boltzmann averaging.
Regardless, the energies still vary roughly linearly with their
respective charge products, with E.. and E., exhibiting the
strongest linear dependence (Figure 4a,c). Noting this linear
dependence, we propose that the energy change as two particles
are brought from infinity to a distance d (=22 nm) is given by
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AU = Coq. + Cpa,” — Cylg.lig, (12)

where the first two terms represent the electrostatic repulsion
between the surfaces and chains, respectively, and the third term
represents the electrostatic attraction between the surface and
chains. The coefficients Ce., Cpp, and C, are all positive, and
may be obtained through a linear fit of the energies, as shown
in Figure 4. It can now be easily shown (by equating eq 12 to
zero) that the negative-energy regime falls within

A2
Cp —NC,, —4C.C,,

lg l<lg l<
2C,, P
2 —
Cp t+ \/Ccp 4C..C,, al (13)
2C,, ¢

The linear fits in Figure 4 yield C.. = 4.36, C,, = 3.55, and
Cep = 12.29, yielding lg,l = 3.1lg | and Ig,| = 0.4lg.| as the upper
and lower bounds of the negative-energy region, respectively
(see Figure 3c). Hence, this crude phenomenological model can
explain the observed triangular nature of the negative-energy
regime in the g.—¢, plot.

We further dissect E,, and E,;, into its intra- and interparticle
contributions: repulsion energy arising from chains of the same
particle (Eyp) and of different particles (Epy) and attraction
energy between the colloid surface and its own chains (E)
and those of the other colloid (E,). These contributions along
with E. have been plotted as a function of distance d for a
representative overall attractive system at g. = —g, = 1.5¢ (also
used in Figure 2c). Expectedly, E.. and E,,; increase monotoni-
cally as the particles approach each other, with the former
exhibiting more short-ranged repulsion. The approach also
causes Eyp; to increase monotonically due to compression of
the chains. The intra- and interparticle attraction energies exhibit
a more interesting interplay: E,, decreases monotonically as
the particles approach, while E,; increases with approach until
d = 22 nm and then exhibits a small decrease thereafter. This
suggests that some of the chains adsorbed on the surface of the
colloid contributing to E,; detach and adsorb onto the surface
of the other colloid as the two particles approach each other.

We next extricate the contribution of polymer bridging to
the attraction Ep, from that due to the “cloud” of chains around
one colloid interacting remotely with the surface of another
particle. We define the polymer-bridging energy as the elec-
trostatic energy between polyelectrolyte beads of one colloid
and the surface charges of the other when the two are within 2
nm of each other; the variation of this energy with interparticle
distance is plotted in Figure 5. Though it may seem that polymer
bridging contributes only ~18% to the attraction E.y, at d =
22 nm, it is quite significant given that it is comparable to the
net attraction between the particles (AA). We find that polymer-
bridging interactions consistently contribute ~15—18% to Ep,
when the surface and chain charges are comparable but their
contribution decreases as the two charges become dissimilar.
Hence, polymer-bridging interactions do contribute significantly
to the overall attraction observed between the colloidal particles.

3.4. Entropic Contribution to Attraction. We now turn our
attention to the entropy contours in Figure 3d, which exhibit a
more complex charge dependence than the energy. At small
magnitudes of g. and g, there is a moderate loss in the entropy
[TAS ~ —2 kcal/mol at (q., ¢,) = (0.5¢, —0.5¢)]. As g, is
increased keeping ¢, fixed, and vice versa, the entropy loss
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Figure 5. Variation of different energy components with interparticle
distance: repulsion between charged surfaces (E..), repulsion between
chains across different particles (Eyp), repulsion between chains from
different colloids (E,;), attraction between chains and surface within
the same colloids (E), and attraction between chains and surface
across different colloids (Ey). Also shown in the plot is the total energy
E, and the energy contribution from bridging interactions Epyiqge-
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Figure 6. (a) Two representative snapshots of the colloidal particle at
(qe> gp) = (0.5e, —0.5¢) (extended) and (2.5¢, —2.5¢) (collapsed). (b)
Contour plot showing the variation in the fraction of polyelectrolyte
chains adsorbed at the surface of an isolated colloid (f,4s) with the colloid
surface and polyelectrolyte charge.

becomes more severe such that, at (g., g,) = (0.5¢, —2.5¢) and
(2.5¢, —0.5¢), TAS ~ —6 kcal/mol. However, a simultaneous
increase in both g. and g, results in the opposite effect: the
entropy change becomes smaller until it changes sign and
becomes positive (favorable). In fact, at (g., g,) = (2.5¢, —2.5¢),
the entropy gain is quite substantial (TAS &~ +6 kcal/mol).
To understand this nontrivial dependence of entropy on the
charges, it is important to first note that the polyelectrolyte
chains exhibit two types of conformations in isolated particles:
collapsed, where the chains are strongly adsorbed onto the
parental colloid surface, and extended, where the chains stretch
outward into the solution (Figure 6a). In Figure 6b, we have
plotted the fraction of strongly adsorbed chains (f,4) in an
isolated particle as a function of surface and polyelectrolyte
charges; a chain is considered adsorbed when one or more of
its three terminal beads remain within 1 nm of the surface.
Clearly, the chains prefer to stay extended when the surface
charge is small, and become increasingly adsorbed with an
increase in their attraction to the surface, which scales roughly
as the product of the two charges lg.g,l. It may therefore seem
surprising that the chains become more extended with their
charge for weakly charged surfaces even though the attraction
between the chains and the surface increases. This difference
can be explained on the basis that, as the chains become more
charged, they also become stiffer due to repulsion between non-
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Figure 7. (a) Contour plot of the variation of the degree of overlapping
polyelectrolyte overlap between two colloidal particles f,, separated
by a distance of d = 22 nm. (b) The density of polyelectrolyte chains
n, o< 47tr7p(r) as a function of normal distance from the colloid surface
for (gc, q,) = (Oe, Oe) (black squares), (Oe, —2.5¢) (red squares), and
(2.5e, —2.5¢) (blue triangles).

neighboring beads, forcing them to adopt more extended
conformations.

Three effects need to be considered to understand the origin
of the complexity in the entropy landscape of Figure 3d. First,
as the particles are brought closer, the chains confined between
them begin to overlap and get squeezed, causing them to lose
entropy. This “chain overlap” effect is the strongest when the
chains adopt extended conformations and the weakest when the
chains are strongly adsorbed. We have quantified this effect in
Figure 7a by computing the fraction of chain beads (f;,) that
lie beyond a 1.5 nm shell around the colloidal surface and would
get squeezed when a second particle is brought within a distance
of 2 nm from its surface, as given by

e dr

(14)
j: np(r) dr

Jov

where n,, is the number of chain beads inside a shell of unit
thickness and radius r from the center of an isolated colloidal
particle and is directly related to density p(r) as n,(r) = 477 p(r).
The variation of n, with » for three charge combinations is
plotted in Figure 7b. Note that we use 1.5 nm here rather than
2 nm to account for the excluded volume of the colloidal surface
(surface charges). We note that the chains are most extended,
and thereby lose the most entropy, when the colloid cores are
uncharged or slightly charged and when the chains are strongly
charged. The chains are in a collapsed state when both the
surface and polyelectrolyte are strongly charged, and lose little
entropy when particles are brought into close proximity. Hence,
the contour plot for f;, in Figure 7b “mirrors” that of f,4 (Figure
6b), as the two represent opposite effects.

Second, the chains could also lose entropy when two colloidal
particles are brought closer by accumulating in the gap between
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Figure 8. (a) Schematic showing the computation of density enhace-
ment fu,n. (b) Contour plot showing density enhancement f.,, of
polyelectrolyte chains confined between colloidal particles d = 22 nm
apart as a function of colloid surface and polyelectrolyte charge.

the particles. Such “density enhancement” results from the
favorable electrostatic potential inside the gap and at the surfaces
and from the reduction in the free volume available to the chains
as the particles are brought closer. We characterize density
enhancement in terms of the quantity f..,, which represents the
ratio of the average chain density within a cylindrical volume
of radius r = 4.5 nm confined between colloids separated by a
distance of d = 22 nm (minus the volume of the two spherical
caps which excludes the chains) and the average chain density
within a cylindrical volume of the same radius but half the length
(minus the volume of one spherical cap) when the two particles
are far apart (see Figure 8a). The density is calculated as the
number of polyelectrolyte beads present per unit volume. Hence,
fenn > 1 implies that the chain density is higher in between the
particles compared to outside, leading to a reduction in chain
entropy. Note that f,,, = 2 in an idealized scenario where chains
do not interact with each other; excluded volume and repulsive
interactions are expected to decrease f,, below this value, and
attractive interactions between chains and the apposing surface
are expected to increase f.,,- The computed f,, values for our
colloids are shown as a contour plot in Figure 8b. Clearly, fen
exhibits a strong modulation with the surface and polyelectrolyte
charges: it is large (>2) for strong surface and weak polyelec-
trolyte charges and small (<2) for the opposite condition. Hence,
the stronger the repulsion between the chains, the lesser is the
chain density between the colloids.

This effect is also clearly visible from the chain density
contour plots of Figure 9, where more than 2-fold enhancement
in the density is observed for (q., ¢,) = (2.5¢, —0.5¢) and (2.5e,
—2.5¢) when the two colloidal particles are near compared to
far. The plots have been constructed by computing the chain
density along planar slices of thickness 1 nm passing through
the centers of two colloids placed d = 22 nm apart, and
averaging this density over an ensemble of such slices oriented
at different angles within a [0, 7] range.

Interestingly, the third effect, which we call “chain flipping”,
leads to entropy gain when two colloidal particles are brought
in close proximity. When particles get close, it allows the chains
adsorbed on the surface of one colloid to detach and adsorb
onto the surface of the apposing colloid, allowing chains to
sample two potential energy minima, as depicted schematically
in Figure 10a. Such a mechanism leads to reasonably large gains
in chain entropy. We expect this effect to be prominent for
chains strongly adsorbed at their parent colloid that possess little
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Figure 9. Contour plots of the polyelectrolyte density for colloidal particles separated by a distance of d = 22 nm at four different combinations
of surface and polyelectrolyte charges (gc, ¢,): (a) (0.5¢, —2.5¢), (b) (2.5¢, —2.5¢), (c) (0.5¢, —0.5¢), and (d) (2.5¢, —0.5¢). The scale is arbitrary.
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Figure 10. (a) Schematic explaining the increase in the entropy of strongly
adsorbed chains when two colloidal particles are brought closer. The blue
curve depicts a cartoon of the potential energy, and the red squiggle
represents the grafted polymer. (b) Contour plot showing the number of
polyelectrolyte chains that switch from adsorbing at the surface of their
parent to adsorbing at the surface of the second colloid, 7.

entropy to begin with, such as those associated with strongly
charged surfaces. This effect may also be roughly quantified in
terms of the number of chains switching from the parent surface
to the apposing surface, ng,, when two particles are brought
from infinity to a distance of d = 22 nm. A rough calculation
assuming that the number of possible configurations of the
polyelectrolyte doubles through this flipping mechanism esti-
mates an entropy gain of kg7 In 2 (~0.42 kcal/mol) per chain.
Figure 9b plots the contour maps of ng;, on the g.—g, space.
Clearly, the mechanism is most prevalent when both ¢g. and g,
are large, i.e., when most of the chains are adsorbed strongly
onto the surface of their colloids and negligible when the chains
prefer to extend outward.

We can now explain the complex charge dependence of the
entropy change observed in Figure 3d in terms of the three
mechanisms of entropy change discussed above. We focus on
the four corner regions of the plot for convenience. When both
q. and g, are small, we observe a moderate loss in entropy.

This loss occurs primarily due to chain overlap, as the chains
are well-extended in this regime and lose significant entropy
when the particles approach each other (see Figure 7). The other
two mechanisms, chain enhancement and chain flipping, do not
contribute to the entropy change due to the weak surface charge
and minimal chain adsorption, respectively. Chain overlap is
also responsible for the sharp reduction in total entropy observed
at small separation distances of d < 22 nm (Figure 2). When
both g. and g, are large, the overall entropy change is favorable.
Here, the chains are strongly adsorbed at the surface and gain
significant entropic freedom when a second charged surface
allows the chains to explore both surfaces (see Figure 10). The
entropy loss due to chain enhancement and overlap is small in
this regime. When ¢. is large but g, is small, the entropy
reduction is dominated by chain enhancement; i.e., the chains
accumulate in the region between the two particles due to their
strongly charged surfaces, leading to limited freedom (Figure
8). The entropy changes due to chain flipping and chain overlap
are weak in this regime. Finally, in the regime of small ¢, and
large g, the chains are stretched outward and lose significant
entropy when they overlap with the chains from a proximal
particle (Figure 10). The effects from chain density enhancement
and chain flipping remain weak, as the colloid surfaces are
weakly charged. Hence, the complex dependence of entropy
on the colloid surface and polyelectrolyte charge strength may
easily be explained as a convolution of three charge-dependent
mechanisms of entropy change.

3.5. Charge Dependence of Total Free Energy. Figure 3b
shows a contour plot of the change in the free energy (AA or
PMF) when two colloidal particles are brought from infinity to
close proximity (4 = 22 nm) as a function of the colloid surface
and polyelectrolyte charge. The particles are repulsive when
both the surface and polyelectrolyte chains are weakly charged
(AA ~ 3.5 kcal/mol when ¢, g, — 0) and become extremely
repulsive when one of the charges (surface or polyelectrolyte)
is much larger than the other (e.g., AA ~ 34 kcal/mol when g,
= 2.5¢ and g, = 0). However, when both charges are increased
simultaneously, the particles begin to exhibit net attraction such
that, at g. = 2.5e and g, = —2.5e, the particles are extremely
attractive with AA ~ —11 kcal/mol.

These trends can be explained in terms of changes in energy
and entropy. At small g. and g, the energetic changes are
favorable but the unfavorable entropic changes dominate,
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Figure 11. Schematic showing how the phenomenological model (eqs
16 and 17) predicts that the hyperbolic attractive regime would expand
and translate depending on the ratio of attractive to repulsive interactions
and the strength of entropic interactions, respectively.

making the overall PMF positive and the particles repulsive.
The particles become even more repulsive when g, is small and
qp is large (or vice versa), as both the energetic and entropic
changes are now unfavorable. When both g, and ¢, are large,
both the energetic and entropic changes contribute favorably
in making the colloidal particles attractive. The net result of
such an interplay between energetic and entropic factors is a
hyperbola-shaped boundary separating the attractive and repul-
sive regimes (Figure 3).

The hyperbolic shape of the attractive regime boundary may
be explained by extending the phenomenological model that
we proposed earlier to explain the triangular negative-energy
regime. Our previous model (eq 12) accounted for energy
changes in bringing two particles close to each other. We now
add an entropic term to this model; this is however not a trivial
task, as the charge dependence of the entropy is quite complex.
To this end, we make the simplified approximation that the
entropy loss is described by a constant AS, < 0 based on the
observations that the entropy change is negative in the low
charge regime and that the charge dependence of the entropy
change in this regime is weak. The total free energy of the two-
colloid system therefore simply becomes

AA = Coq’ + Cpa,’ — Cylglig) — TAS, (15)

The boundary of the attractive regime may now simply be
obtained by setting AA to zero, which indeed yields the standard
equation of a hyperbola.

Next, we explore some properties of this hyperbola to predict
roughly how changes in energetic and entropic terms affect the
shape and location of the attractive regime. To facilitate such
an analysis, we exploit the symmetric shape of the hyperbolic
regime in the g.—¢, space and suggest that C.. ~ Cpp. It can
now be shown that the distance of the vertex of the hyperbola
(intersection of the hyperbola with its major axis; Figure 11)
from the origin is given by

. —TAS, 6
AN C2C, — 1 (16)

and the breadth of the hyperbola at a distance d,,, from the origin
is given by

Arya

Cop — 2C,

Cyp T 2C,, an

d, = 2d,

where C, > 2C. for an attraction to exist. Equation 16 suggests
that the attractive regime should shift away from the origin (d,
increases) when either the entropic penalty becomes larger, i.e.,
—TAS) increases, or the attractive polymer/surface interactions
become weak, i.e., Co, — 2C (Figure 11). Equation 17 suggests
that the breadth of the attractive regime, d,, should increase as
the attractive terms in the energy (polymer-bridging interactions)
dominate the repulsion of the surfaces and the chain, i.e, C, >
2C,.. Both predictions look reasonable, and it would be
interesting to test them through additional simulations and
experiments. Also, a more rigorous quantitiative model invoking
proper averaging of repulsive and attractive interactions in eq
5 would be highly useful.

3.6. Implications. An important result of this study is that
the entropy plays an equally important role as energy in dictating
the strength of attraction between polyelectrolyte-grafted col-
loids. On the one hand, it promotes repulsion for weakly charged
particles (g. and g, small), but on the other hand, it promotes
attraction for strongly charged colloids (g. and g, large). Since
the entropic interactions are dictated by a competition between
chain adsorption at the surface of the colloid and their bridging
across two colloidal particles, it would be interesting to test if
this dual role of entropy can be modulated by changing the
flexibility of the polyelectrolyte chains or their attachment
configuration at the surface.

Another key result is the characteristic hyperbolic shape of
the attractive regime. The shape and inclination of this hyperbola
relative to g, and g, axes imply two general trends. First, the
magnitude of the attractive force follows a nonmonotonic
dependence with charge when either the surface or polyelec-
trolyte charge is increased while keeping the other charge
constant. Second, the attractive force increases monotonically
when the surface and polyelectrolyte charges are increased
simultaneously. These trends now explain why previous studies
examining a very narrow range of charge space sometimes
observed a monotonic increase in the attraction between colloids
with the surface charge'® while other times a nonmonotonic
dependence with surface charge was observed.'??!

Our results also provide basis for the observation that
polyelectrolyte-grafted colloids exhibit a very rich phase
behavior. Also, our study suggests that the phase properties of
such colloidal systems could be controlled through manipulation
of the surface and/or polyelectrolyte charge. As an example,
consider a stable colloidal system in which the surface and
polyelectrolyte charges differ significantly in magnitude to
promote repulsion among particles. One can envision that such
a system could be forced to phase separate (destabilize) by
simply changing the solution pH in order to make the surface
and polyelectrolyte charges more comparable in magnitude
through selective protonation or deprotonation of their chemical
groups.

It should also be emphasized that our model system represents
only a small subset of the available parameter space. Some of
the other parameters whose effects are not studied here include
chain flexibility and length, grafting density, temperature, and
salt concentration. Though changes in these parameters could
certainly affect the magnitude of the energetic and entropic
forces, we believe the qualitative interplay between them to
produce hyperbolic regions of attraction will remain unchanged.
For example, in this study, the van der Waals energy parameter
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has been deliberately kept small to focus on the electrostatic
contributions, but we expect that these van der Waals interac-
tions could potentially contribute to long-range attraction scaling
as ~d? in the case of spherical colloids.?! On the basis of our
results (Figure 11), we expect such longer-ranged attraction that
is independent of charge values to bring the attractive regime
closer to the origin in the g.—¢, plot.

It is also instructive to analyze the physical relevance of the
charge values examined in this study. We have considered a
maximum charge of 2.5¢ on each polyelectrolyte bead of size
1 nm, which translates to a line-charge density of 3.0e/nm.
Single-stranded and double-stranded DNA that are often tethered
to colloids have line-charge densities of 3 and 6e/nm, respec-
tively. If these densities are calculated on the basis of the actual
extension of DNA, they turn out to be even higher. Further,
the highest surface charge values considered in this study are
3.0e corresponding to a charge density of ~0.7e/nm?, which is
well within the reach of biological membranes®? and nanopar-
ticles.’ Hence, both our polyelectrolyte and colloid charges are
within reasonable physical bounds.

Finally, an issue that this study does not fully address is the
role of charge correlations in the observed attraction between
colloidal particles. Generally, charge correlations are important
when the charges are multivalent and/or the charge densities
are high. Hence, one expects this effect could be important when
our polyelectrolyte chains becomes strongly charged. However,
we believe that charge correlations may not be very important
for our system, as compared to polymer-bridging interactions,
based on two recent findings. Muhlbacher et al.” studied a system
similar to ours to show that the net attraction between particles
decays in a manner consistent with polymer-bridging mediated
attraction rather than charge-correlation mediated attraction
which decays with a characteristic Debye length. In another
study, Turesson et al.>* used a special Poisson—Boltzmann
theory to demonstrate that charge correlations dominate attrac-
tion only in the limit of stiff chains where the entropic cost of
forming bridges across surfaces becomes formidable. Given that
the attraction observed in our colloids persists for distances
longer than the Debye length (2 nm) and that our chains are
fairly flexible, we do not anticipate that charge correlation is
very significant in our study.

4. Conclusions

In this paper, we provide new insights into the attraction
between polymer-grafted colloidal particles, where the surface
of the colloid and the polymer chains carry opposite charges.
We employ Monte Carlo simulations to compute the potential
of mean force (PMF) between two such colloidal particles
treated at the coarse-grained level as a function of their
separation distance. The computed PMFs display a rich behavior
with respect to the charges carried by the surface and polyelec-
trolyte chains, with some PMFs showing attractive forces and
others showing purely repulsive interactions. By categorizing
the PMFs as attractive or repulsive, we obtain the extent of the
attractive-force regime of the colloids in the two-dimensional
space of the surface and polyelectrolyte charge. We find that
the boundary of the attractive regime exhibits a characteristic
hyperbolic shape, where the attractive regime occupies the inside
of the hyperbola and the repulsive regime occupies the region
outside.

To provide further insights, we have decomposed the PMF
into its energetic and entropic contributions. We observe that a
complex interplay between energetic and entropic factors
dictates the attraction between colloidal particles. In general,
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the energy of the system is dictated by a competition between
the energy loss from polymer/surface interactions, which
includes polymer-bridging interactions, and the energy gain from
mutual repulsion between the surfaces and the polyelectrolyte
chains. The entropy is dictated by several factors: favorable
entropy gain from polyelectrolyte chains flipping between the
two colloid surfaces, associated with polymer-bridging, and
entropy loss due to overlap of polyelectrolyte chains and their
accumulation in the electrostatically favorable region in between
the particles. For particles with weakly charged surfaces and
polyelectrolyte chains, the entropy loss arising from chain
overlap dominates the favorable polymer/surface interactions,
resulting in a net repulsion. When both the surface and
polyelectrolyte chains are strongly charged, the energy loss due
to polymer/surface interactions and the entropic gain from chain
flipping contribute to net attraction between particles. When one
of the charges (surface or polyelectrolyte) dominates the other,
strong repulsive forces arise due to a combination of severe
repulsion between the surfaces and large entropy loss due to
chain overlap and accumulation in the region confined between
two particles.

The result of this interplay is a hyperbola-shaped region of
attraction in the two-dimensional charge space. We propose a
rough phenomenological model to explain this particular shape
of the attractive regime and to make useful predictions regarding
its size and location with respect to changes in energetic and
entropic interactions. Our results also explain past discrepancies
in experimental results concerning the charge dependence of
attractive forces and suggest ways of controlling the interaction
between polymer-grafted colloidal particles through charge
modulation.
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