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In single-molecule force spectroscopy, individual molecules and complexes are often stretched by

pulling devices via intervening molecular handles. Accurate interpretation of measurements from

such experiments in terms of the underlying energy landscape, defined by activation barriers and

intrinsic rates of transition, relies on our understanding, and proper theoretical treatment, of the

effects of the pulling device and handle. Here, we present a framework based on Kramers’ theory

that elucidates the dependence of measured rupture forces and rates on the pulling device stiffness

and attributes of the handle, contour length and persistence length. We also introduce a simple

analytic model that improves prediction of activation barriers and intrinsic rates for all device

stiffnesses and handle properties, thus allowing for a more reliable interpretation of experiments.

Our analyses also suggests intuitive ways of displaying the measured force spectra for proper

prognosis of device and handle effects and provides the range of device and handle attributes

over which these effects can be neglected.

Introduction

Single-molecule force spectroscopy1–3 (SMFS) has attracted

much attention in recent times for its ability to unravel

complex biomolecular interactions and reaction-pathways.4,5

In these techniques, tiny forces ranging from pico- to nano-

newtons are applied to molecules of interest using sophisti-

cated devices like optical traps and AFM cantilevers to record

their response to stretching. Molecular response is generally

characterized in two ways—distribution of lifetime p(t) of

bound molecular conformation at different fixed force levels

F (‘‘constant-force’’ experiments) and distribution of forces

p(FR) at which molecules rupture under the action of linearly

or quasi-linearly increasing force levels (‘‘constant-speed’’

experiments).

The underlying microscopic interactions governing molecular

response is best understood in terms of the free energy landscape,

which provides information about the stabilities of molecular

conformations, barriers to activation, range of interactions,

and kinetics of transition between states. Understanding this

link between molecular response and the energy landscape has

been greatly facilitated by theoretical efforts.6–11 Improved

statistical interpretation of the measurements have allowed

extraction of the energy landscape parameters—the spontaneous

rate of rupture k0, the activation energy barrier U*, and

distance of the barrier from the native state x*. The earliest

work provided an asymptotic relationship between rupture

rate k(F) and force F for small applied forces.6 Subsequently,

the kinetics of force-induced bond rupture was explained in

terms of the diffusion of a Brownian particle9 over a con-

tinually decreasing barrier by invoking the Kramers’ theory.12,13

Recently, theoretical models using predefined, one-dimensional

and single-barrier energy profiles have provided specific

yet more realistic descriptions of k(F), p(FR), and the force

spectra FRð _FÞ (FR: mean rupture force, _F : loading rate)

applicable over a broad range of forces and loading rates,

respectively.14–17

The above models have been derived for the simplified case

of a molecule being pulled directly by a soft device.18 However,

in reality, particularly to disrupt strongly bound or folded

molecules one is required to employ a stiff device (large spring

constant). Further, a polymeric handle (also known as a

tether, anchor, spacer, or linker) connecting the molecule to

the device is used for improving the resolution of rupture

events and suppressing unwanted, non-specific interactions

between the molecules and the device.19 Although, the device20–22

and handle23–28 have been shown to modulate kinetics and

binding strength of molecules and complexes, capturing

such effects succinctly within an analytical framework for

accurate prediction of the key energy-landscape parameters

has remained elusive.

Recently, we have explained the effects of device stiffness in

the absence of handles within an analytical model18 (also see

ref. 22) over a broad range of pulling speeds V. Incorporating

the effect of a handle is significantly more challenging,27–29

particularly, due to its non-linear force-extension relationship

beyond the small force regime that makes its rate of loading
_F(F) to depend strongly on the applied force. Compare this to

the pulling device, which exhibits simple Hookean behavior

where _F remains constant over a range of forces. Thus, reliable

interpretation of SMFS measurements is faced with two

outstanding issues: How does the pulling device and handle,

concurrently, affect force measurements over a broad range

of control parameters? How can these effects be modeled

analytically?

In this article, we present an approach based on Kramers’

theory that permits us to elucidate the influence of the pulling

device and handle over a wide range of handle lengths, applied
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forces, and pulling speeds on k(F), p(FR), FRð _FÞ. We also

introduce a simple analytical procedure to model k(F) from

arbitrary handle attributes and device stiffnesses, which can be

utilized to improve the accuracy of the extracted energy

landscape parameters. Additionally, our analyses uncover

discernable signatures of force-induced rupture rates and force

spectra that could be used as indicators of handle and device

effects and allows us to formulate conditions where these

effects become important.

Model development

Modeling bond rupture with pulling device and handles

We treat the rupture of a molecule or bond at equilibrium

(F = 0) as the thermally-driven escape of a Brownian particle

with diffusivity D from a potential energy well, representing its

native bound state. The free energy of the bond along the

reaction coordinate x is described by a linear-cubic function8,15

U0(x) = Fcx � Fdx
3 (Fc = 1.5U*/x*, Fd = 2U*/x*3) with an

energy barrier of height DU|F=0 = U* located a distance

Dx|F=0 = x* from the native state. Here, the particle position

x represents an order parameter defining the state of the bond

and can be used for keeping track of the progress of

bond rupture. We next consider facilitated rupture of the bond

through constant-speed pulling such that quasistatic condition

is maintained throughout the process. This condition is realized

when the timescale of pulling is much larger than the timescales

of relaxation of the molecule, handle and the device. Three

different pulling scenarios (Fig. 1) are examined.

Case I (Fig. 1a top) represents the limiting case where the

pulling device of stiffness K is connected directly to the bond

and no handle is used, i.e., the handle stiffness Kh - N. The

total free energy of the composite system is therefore given by

U(x;t) = U0(x) + Udev(Vt � x;t), (1)

where Udev(l;t) = Kl2/2 represents the energy contribution

of the device when treated as a Hookean spring1 of length

l � l(t) at time t. The speed of pulling is denoted by V.

Case II (Fig. 1a middle) represents another limiting condi-

tion where the bond is now connected to a handle and pulled

without any pulling device, i.e., K - N, the system free

energy is then given by

U(x;t) = U0(x) + Uhan(Vt � x;t). (2)

Here, the handle is treated as a worm-like chain (WLC),30,31

which describes the force-extension behavior of double-

stranded DNA and unfolded proteins. The WLC energy for

a handle end-to-end distance l � l(t) so that l Z 0 at time t is

given by

Uhanðl; tÞ ¼ 1

2Pb
L

2 1� l
L

� �þ l2

L
� l
2

" #
; ð3Þ

where P and L are the persistence length and contour length,

respectively, and b � 1/kBT (kB: Boltzmann constant and

T: temperature).

Case III (Fig. 1a bottom) is the most general case where the

bond is connected to the pulling device via an intervening

WLC handle with a total free energy given by

U(x,x1;t) = U0(x) + Uhan(x1 � x;t) + Udev(Vt � x1;t), (4)

where x is the position of the bond connected to one end of the

handle and x1 is the position of the other end of the handle.

Rupture rate-force relationship

To compute the instantaneous rate of escape of the Brownian

particle from the well for all three cases we use Kramers’

theory under the assumption of high barrier bDU c 1 and

large particle friction. For case I, we use the exact expression

for k(F):18

kðF ; wÞ ¼ k0 w2 � Fw
Fc

� �1
2

ebU
�f1�ðw2�Fw=FcÞ3=2g; ð5Þ

where w = 1 + K/Km and Km = q2U0(x)/qx
2|x = x� at the

point of energy minimum, x�. In the limit of soft pulling

device, w = 1, one recovers the relationship given in ref. 15.

We refer to this limit as the soft-spring theory and denote

kth(F) � k(F;w = 1). This limit will serve as a baseline for all

subsequent comparisons.

Since cases II and III are not analytically tractable, we use a

numerical approach to obtain k(F). For case II, we numeri-

cally evaluate the time (t) dependent locations of the minimum

x = x� (the instantaneous state of the bond) and maximum

x = x+ (the instantaneous location of the energy barrier) of

the continuously tilting composite energy profile in eqn (2) to

yield the energies U(x�;t) and U(x+;t) and the curvatures

U0 0(x�;t) and U0 0(x+;t). The instantaneous Kramers’ escape

rate is then computed from

k(t) = t(t)�1exp[�bDU(t)], (6)

where tðtÞ�1 ¼ ðbD=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 00ðx�; tÞjU 00ðxþ; tÞj

p
and DU(t) =

U(x+;t) � U(x�;t). As time is parametrically related to force

via F(t) = K(Vt � x�) , the time-dependent rupture rates can

be easily transformed to force-dependent rupture rates, k(F).

For case III, the composite energy profile is a function

of both the particle x and handle position x1 (eqn (4))

(see Fig. 1b). However, x1 and x are constrained through a

quasistatic pulling condition qU(x,x1;t)/qx1 = 0, which stipu-

lates zero net force on the handle at all times. Consequently,

Fig. 1 (a) Cartoon of single-molecule force spectroscopy experiment

and the different cases investigated (see text for details). (b) Total free

energy profile (solid curve) at time t = t1 (F = F1) is distorted with

time (t = t2 4 t1; F = F2 4 F1) as pulling progresses. Also shown

at t = t1 are the maximum and minimum energy configurations of the

particle, handle and device.
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we can obtain for all t the locations of the minimum x�(t) and

maximum x+(t) of U(x,x1;t) subject to the constraint

qU(x,x1;t)/qx1 = 0 to yield energies U(x�,x1
�;t) and

U(x+,x1
+;t) and curvatures U0 0(x�,x1

�;t) and U0 0(x+,x1
+;t),

where x1
� and x1

+ correspond to values of x1 that satisfy the

quasistatic pulling constraint for x = x� and x = x+,

respectively. Kramers’ theory then provides the rate k(t)

(eqn (6)) with tðtÞ�1 ¼ ðbD=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 00ðx�; x�1 ; tÞjU 00ðxþ; xþ1 ; tÞj

p
and DU(t) = U(x+,x1

+;t) � U(x�,x1
�;t). As in Case II, k(t)

can be recast to k(F) via F(t) = K(Vt � x1
�).

Distribution of rupture forces

The distribution of bond rupture times, p(t), and the survival

probability s(t) can be computed by substituting k(t) in

pðtÞ ¼ �dsðtÞ
dt
¼ kðtÞsðtÞ.9,32 Irrespective of how the applied

force scales with time, one can rewrite this as p(F) =

�ds(F)/dF = k(F)s(F)/ _F(F). Eliminating s(F) from the above

equalities, one gets29

pðFRÞ ¼
kðFRÞ

_F
exp �

Z FR

0

kðFÞ= _FðFÞdF
� �

; ð7Þ

where the actual loading rate is denoted by _F(F) (see eqn (12a)).

For case I, the loading rate is constant, _F = KV/w, and an exact

expression of p(FR) can be formulated18 using eqn (5):

pðFRÞ ¼
kðFRÞeqX

_F
exp � kðFRÞ

b _Fwx�
w2 � wFR

Fc

� ��1
2

" #
; ð8Þ

where q � exp[bU*{1 � w3}] and X � k0/bw _Fx*. For cases II

and III, p(FR) can only be obtained numerically via eqn (7) by

using the numerical force-dependent loading rate _F � dF(t)/dt

that includes the effect from WLC.

Mean rupture force versus loading rate

SMFS data is often displayed by plotting mean rupture forces,

FR, as a function of loading rates, _F . FR is defined as

FR ¼
Z 1
0

FRpðFRÞdFR: ð9Þ

For case I, _F is the force independent loading rate KV/w and

we use the expression of FRð _FÞ:18

FR ffi Fcw 1� 1� eqXE1ðqXÞ
bU�w3

� �2=3
" #

: ð10Þ

Here E1ðuÞ ¼
R1
u

e�z
z
dz is the exponential integral33 which

can be approximated as euE1(u) E ln(1 + e�g/u), where

g = 0.577. . . is the Euler-Mascheroni constant. In the limit

of soft springs w = 1 (q = 1), eqn (10) is identical to the

prediction for soft devices.16

For cases II and III we find that the definition _F = KV is

permissible only in the limit of soft pulling device. Outside this

limit, and in general, one must use the actual loading rate

inclusive of the compliance of all the elements, namely, the

pulling device, the handle (if present), and the molecule. As the

loading rate is dependent on force due to the linker elasticity,

we find it intuitive to compute the actual rate of loading as a

mean value from

_F ¼
Z 1
0

_FðFRÞpðFRÞdFR: ð11Þ

In this way we can create a map of FR and _F for a set of

{K, L, V} (using eqn (9) and (11)).

Since experimentally it is not always possible to extract the

loading rate at the point of rupture one can combine p(FR)

with the theoretical loading rate29

_FðFÞ ¼ KeV ; KeðFÞ�1 ¼ K�1m þ KwcðFÞ�1 þ K�1 ð12aÞ

Km ¼
6U�

x�2
; KwlcðFÞ ¼

3þ 5bFPþ 8ðbFPÞ2:5

2bLPð1þ bFPÞ ; ð12bÞ

with good accuracy, where K�1e is the effective compliance.

Note that we have included the intrinsic compliance 1/Km of

the molecule that has been mostly omitted in earlier studies

owing to the assumptions Km c K and Km c Kh.

Implementation details

The above analyses of k(F), p(FR), and FRð _FÞ for the three

pulling scenarios is carried out at temperature T = 300 K

possessing an intrinsic diffusivity of D = 4.2 � 10�9 nm2/ps.

The bond is described by a linear-cubic energy function with

parametersU*= 50 kJ mol�1 and x*= 0.25 nm, representative

of typical non-covalent interactions stabilizing ligand–receptor

complexes. The main conclusions of this study are based

on these parameters that typify relatively stiff bonds. Our

inferences remain unchanged when we chose parameters that

exemplify, for instance, bonds with shallow energy well, as

long as the device stiffness is maintained smaller than the bond

stiffness. We consider the handle to be made of dsDNA with

persistence length P = 50 nm. The control parameters are

varied within an experimentally accessible range: V = 10�10,

5 � 10�10, 10�9, 5 � 10�9, 10�8 nm/ps, K = 1, 10, 20,. . .,100,

200 kJ mol�1 nm�2 (which represent small to medium level

stiff AFM tips), and L = 100, 200,. . .,1000 nm. All numerical

codes are written and executed in MATLAB R2010a.

It is instructive to examine if the imposed pulling speeds

satisfy the quasistatic pulling assumption invoked earlier. In

other words, is the system being pulled at a rate much slower

than the slowest relaxation timescale of the system, which in

our system corresponds to that of the WLC handle? Evans and

Ritchie27 suggested that the timescale of the slowest bending

mode of a WLC is given by twlc oZP2L/kBT, where Z is the

solvent viscosity, while the pulling timescale is given by

tp = xe/V, where xe E (PL)1/2 is the end-to-end distance of

the WLC handle. Therefore, the quasistatic pulling condition

tp c twlc yields ZP
3/2L1/2V/kBT { 1. Using Z/kBT E 2.45 �

10�10 s nm�3 for water, it can be shown that this condition is

satisfied for all pulling rates used in our study. Since, these

pulling rates are representative of experimental pulling

rates, we expect that most typical SMFS experiments satisfy

the quasistatic pulling condition. However, for much higher

pulling speeds, such as those employed in steered molecular

dynamics simulations, the quasistatic assumption may no

more be valid. In such cases, the interpretation of data
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becomes difficult due to non-equilibrium effects34 and one has

to resort to other methods of energy landscape reconstruction,

such as the Jarzynski approach.35

Results and discussion

Pulling device and handles exhibit distinct signatures in rupture

rate and force plots

Fig. 2a shows the theoretical k(F) for the limiting case I when

no handle is present and only the stiffness of the pulling device

modulates rupture process; a distinct convergence of k(F)

curves for different K values is noted with increasing force.

As we have shown previously,18 changing the device stiffness

from soft to stiff (K = 1 to 200 kJ mol�1 nm�2) leads to a

suppression of rupture rates at the same force level; this

‘‘device effect’’ is especially strong at small forces. The reason

is attributed to the heightening of the energy barrier with the

attachment of the device, and specifically for F - 0, DU E
U* + Kx*2/2. Since k(F) p exp(�bDU), the kinetic rate is

suppressed by the factor q = exp(�bKx*2/2). Hence, the

device can be ignored only if bKx*2/2 { 1, i.e., the limit of

soft devices would make q - 1. Note that as x* continues to

decrease with F, so does q, thereby causing k(F) from distinct

K values to converge with increasing F.

A similar compliance based reasoning can explain the

diverging appearance of k(F) curves for case II (Fig. 2b). For

small forces F o 1/bP the WLC handle behaves as a random

coil polymer with its stiffness satisfying Kwlc E 1/bLP {
2/bx*2. Hence, L dependence of rupture rates is not observed

in this regime. However, handle stiffness in the large force

limit F 4 1/bP follows Kwlc p 1/L (from eqn (12)) so that

short handles (e.g., L = 100 nm) will be less compliant and

violate the condition Kwlc { 2/bx*2. Hence, at the same high

force level, shorter handles will produce greater reduction in

the rupture rate than longer handles for constant P. Thus, the

diverging appearance of the rupture rates versus force is a

signature of ‘‘handle effects’’.

Such distinct patterns also emerge in the plots of mean

rupture force FR versus mean loading rate _F in Fig. 3a and b.

In the former, a slight convergence in FR curves from low to

high loading rates between the different device stiffnesses is

observed while in the latter, a divergence in FR curves between

the different handle lengths is observed. We propose that such

trends, likely also observed in SMFS experiments, could be

used to assess whether the device or handle effects need to be

ignored or taken into account.

Applicability regime of the soft-spring theory

The soft-spring theory prediction (eqn (5) with w = 1) is

overlayed as dotted line in Fig. 2a–d. Clearly, only for

sufficiently small K (=1 kJ mol�1 nm�2) values (Fig. 2d) do

the computed k(F) match those predicted by the soft-spring

theory for all handle lengths and a wide range of forces. This is

further supported by the overlapping p(FR) in Fig. 2d-inset for

K = 1 kJ mol�1 nm�2 and different L. Also, the soft-spring

approximation for FR versus loading rates (eqn (10) with w=1

and q= 1) (dotted lines in Fig. 3c and d) show good fits to the

numerical FR from K = 1 kJ mol�1 nm�2 (�) and are

independent of L and V.

Previously, we have shown that a ‘‘soft’’ device is one that

satisfies K { 2/bx*2 (assuming that K { Km, where Km is the

native bond stiffness). When both handle and device are

Fig. 2 Rupture rates k(F) versus applied force F at pulling speed

V = 10�10 nm/ps for different conditions: (a) Case I without handle

(Kh - N), (b) Case II with handle but without pulling device

(K - N), and (c,d) Case III with handle and pulling device with

K [kJ mol�1 nm�2] = 200 (c) and = 1 (d), respectively. In (a) the

stiffness are K [kJ mol�1 nm�2] = 1 (green, solid line), 100 (red, dot-

dashed line), 200 (orange, dashed line) and in (b–d), the handle lengths

are L[nm] = 100 (orange, dashed lines), 500 (red, dot-dashed lines),

1000 (green, solid lines). Bell’s relation (gray, solid line) and soft-

spring prediction (black dots) are overlayed. Insets in (a–d) represent

the corresponding p(FR) for each condition.

Fig. 3 Mean rupture force versus loading rate for: (a) Case I without

handle but pulling device, (b) Case II with handle without pulling

device, and (c,d) Case III with handle and pulling device. In (a–c), the

actual loading rate is used while in (d), the apparent loading rate KV is

used. For all cases, the soft-spring prediction overlaid as black dots.

Symbols: (a) K[kJ mol�1 nm�1] = 1 (green, solid), 100 (red,

dot-dashed), 200 (orange, dashed). (b) Linker length L = 100 (orange,

n), 500 (red, J), 1000 (green, &). (c,d): K = 1 (�), 50 (&), 100 (+);

symbol size denotes L[nm] = 100 (small), 500 (medium), 1000 (large);

and V[nm/ps] = 10�10 (blue), 10�9 (red), 10�8 (green).
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present, one expects Ke { 2/bx*2 for the soft-spring theory

to be valid. Also, the effective compliance (eqn (12a)) is

dominated by the component (molecule, device, or handle)

which has the largest compliance. For small forces F o 1/bP,
Kwlc E 1/bLP is almost always smaller than 2/bx*2. Hence,

the soft-spring criteria Ke { 2/bx*2 is always satisfied. This

can be seen in Fig. 2b–d where the computed k(F)-curves for

all L converge to the soft-spring limit at small forces, irres-

pective of device stiffness. Interestingly, the asymptotic Bell’s

model (grey lines, Fig. 2b–d) does an excellent job in this

limit where both the handle and device stiffness effects are

negligible. On the other hand, for sufficiently large forces

F \ 1/bP, and sufficiently small L (see eqn (12b)), one has

Kwlc c K. In this case, the effective compliance is determined

solely by K. Thus, we conclude that for the entire range of

forces, K { 2/bx*2 guarantees a unique master curve k(F) for

any handle length L and quasi-static pulling speed V.

Alternatively, one can formulate a condition for L

that guarantees applicability of the soft-spring theory irres-

pective of K, i.e., by choosing a sufficiently long L such that

Kwlc(F) { 2/bx*2. For large applied forces, this condition

becomes L c 2x*2(bPF)1.5/P (from eqn (12b)). Using the

maximum possible force in the system Fc = 1.5U*/x*, the

soft-spring theory is then valid for the entire range of forces

provided L \ 4(Px*)0.5(bU*)1.5. In our numerical analysis

L \ 1300 nm should lead to a good match between the exact

results and the soft-spring theory over a wide range of force

irrespective of K. Indeed, for L = 1000 nm in Fig. 2c and 3c,

the numerical rupture rates (green, solid line) and rupture

forces (large symbols �, &, +) appear close to soft-spring

prediction (dotted lines) irrespective of (K,F) and (K,V),

respectively. Coincidently, SMFS experiments with optical

traps (K E 10�3�1 kJ mol�1 nm�2) tend to utilize mm-long

dsDNA handles,4 suggesting that the soft-spring theory may

be adequate to analyze force measurements from such studies.

Unique master curves and smooth force spectra are not

guaranteed for all device stiffnesses and handle lengths

Even though p(FR) from constant speed experiments when trans-

formed to k(F) in the limit of soft pulling device or long handles

generate a single master curve, this is generally not true for any K

and L. For instance, in Fig. 2c for K = 200 kJ mol�1 nm�2,

different L show incongruence in the intermediate force regime.

This incongruence is corroborated by the non-overlapping rupture

force distributions for the same K (Fig. 2c-inset) at L = 100 nm

(orange, dashed line) and 1000 nm (green, solid line) and further

accentuated for K - N results (Fig. 2b-inset).

Since the characteristics of p(FR) and k(F) are passed onto

the force spectra, an increase in K also leads to a scatter in the

mean rupture forces FR for a given V and different L such

that small L values correlate with larger rupture forces and

vice versa (Fig. 3d). A similar scatter in FR has also been

observed experimentally in the rupture of biotin-streptavidin

complexes,20 also likely originating from variations in the

employed K and L. As expected, no scatter in FR is observed

for small K (=kJ mol�1 nm�2) for all L and V, as shown by

symbol � in Fig. 3d. These results suggest that only when the

device stiffness satisfies K { 2/bx*2, the nominal loading rate

_F = KV acts as a reliable control parameter. This explains

why many studies performed with biomembrane force probes

and optical tweezers of very small stiffness could successfully

use the nominal loading rate to produce unique curves.

However, for arbitrary K and L, the nominal loading rate is

not a good control parameter, as it is not known a priori if the

soft-spring limit is satisfied. Thus, the actual loading rate must

be used for accurate data analyses. Indeed, when the above

spectra is re-plotted with the actual loading rates from eqn (11)

(Fig. 3c), the aforementioned scatter in data vanishes.

It is to be noted that a numerical master curve in Fig. 2 for a

given K is obtained directly from the Kramers’ rate expression

and not indirectly through a conversion of p(FR), which

explains why the curves for the entire range of force could

be generated from a single pulling speed V. However, in

reality, a master curve is generated from the p(FR) data

measured in a constant-speed SMFS experiment.29 Because

of the difficulty in acquiring precise data in the tail regions of

p(FR) (away from the mean) (see Fig. 2b–d-insets), SMFS

experiments can only probe a small force range and thereby

only produce a small window of data for a given (K,V).

Therefore, only by combining several of these windows

generated from a set of (K, V) is one able to generate the

master curve k(F) over a large range of F.

To conclude, unique master curves may not always be

realized for arbitrary K and L while converting p(FR)

from constant speed experiments to k(F).29 Only for small

K ({2/bx*2) can one apply the soft-spring theory to p(FR),

k(F) and FRð _FÞ irrespective of L and V. However, for large K,

caution needs to be exercised while fitting theory, as the

extracted fit-parameters will be prone to errors, especially

when the window of _F or F is narrow.

Deviation of rupture rates from soft-spring theory

To quantify device and handle effects, we compute the devia-

tion of the numerically determined kK,L(F) from soft-spring

theory kth(F) for a given V and a range of K and L by

eK ;L ¼
X
i

j1� kK ;LðFiÞ=kthðFiÞj
" #,X

i

1: ð13Þ

Here, the summation is performed within the range of forces

given by the width of the distribution of rupture forces p(FR)

about its mean, i.e. Fi 2 ½FR � s;FR þ s� where s refers to the

standard deviation of p(FR). Fig. 4a summarizes the deviation

(eqn (13)) at V = 10�10 nm/ps. Clearly, for small K and large

L the deviations are negligible (o5%) whereas for the largest

K (which is just 1.25 � 2/bx*2) the deviations can be as high

as 35%.

To explore how the stiffness of the molecule impacts the

deviations, we repeated the calculations by changing only the

interaction range x* for a fixed K = 100 kJ mol�1 nm�1 and

L = 100 nm (Fig. 4b) to find as much as 86% deviation

(about 7-fold lowering of kinetics) for the shallowest energy

well (x* = 1 nm). Thus, for forced-unbinding of relatively soft

molecules like RNA (x* E 10 nm5) and ddFLN4 protein

(x* E 1 nm36), we infer lesser applicability of the soft spring

model when stiff AFM tips (1–100 kJ mol�1 nm�2) are

utilized. To test this, we use approximate data from unfolding
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of ddFLN4:29,36 x* = 1 nm; U* = 40 kJ mol�1;

D = 10�9 nm2/ps; K [kJ mol�1 nm�2] = 0.05–20; L [nm] =

5–100; P = 0.5 nm; T = 300 K; V = 2.5 � 10�12 nm/ps.

We find that even an AFM tip of medium stiffness,

K = 20 kJ mol�1 nm�2, can produce discrepancies between

15 and 70% from soft spring model corresponding to handle

lengths between 100 nm and 5 nm.

Modeling rupture rates from arbitrary device stiffness and

handle lengths

To make headway in theoretically treating k(F) obtained from

using arbitrary K and L, we utilize an adapted form of eqn (5).

We know for case I that w captures the stiffness effects

originating from pulling device. Extending this concept to

the more general case III, we propose reparameterization of

w so as to incorporate the effective compliance of both the

handle and the device:

w � w(F) = 1 + {K�1 + Kwlc(F)
�1}�1/Km (14)

where Km and Kwlc are given by eqn (12b). Such a definition of w
implicitly makes a harmonic approximation of the handle’s elastic

behavior at any given time,Uhan(x1� x;t)EKwlc(F)(x1� x)2/2 in

eqn (4). This is reasonable considering that the system is instan-

taneously in equilibrium under quasi-static pulling speeds and

when applied forces are not exceptionally high.

The rupture rate expression in eqn (5) with the repara-

meterized w of eqn (14) are shown by dotted lines in Fig. 4c

and its inset along with the numerically computed k(F). The

remarkable congruence (accurate within 3.5% for L= 100 nm

and K = 100 kJ mol�1 nm�2, i.e., an order of magnitude

improvement over soft-spring theory) between the two results

underscores the possibility of going beyond the applicability

regimes of soft-spring theory to arbitrary device stiffness and

handle lengths. This framework could also be used with an

FJC model or its suitable variant for tethers like PEG that

are often used in conjuction with forced-rupture of ligand-

receptors. In this case, however, one has to account for the

force dependent compliance of the FJC linker by replacing

Kwlc(F)
�1 in eqn (14). Thus, expanding the space of obser-

vables such as k(F) and p(FR) through designing experiments

over a range of K, L and V will allow accurate extraction of all

the key parameters: U*, x*, and k0.

Conclusion

The theoretical framework introduced here quantifies the effects

of the external elements, the pulling device and connecting

handle, in single molecule force measurements. Specifically, we

utilize Kramers’ theory with a dynamic energy landscape

description of the external elements linked to the molecule that

is applicable over a broad range of pulling speeds and applied

forces and not restricted to asymptotic limits. Our analyses leads

us to an improved analytical model encompassing multiple

control parameters (pulling speeds, handle types and lengths,

device stiffnesses) that can dramatically improve prediction of

activation barriers and intrinsic transition rates. The model

(eqn (5)) allows for a succinct description of rupture rates in

which the attributes of the handle and the device are embedded

in a single parameter w (eqn (14) and (12)). For extracting kinetic

and energetic information from experimental rupture forces, we

suggest conversion of p(FR) to k(F)29 followed by fitting with

eqn (5). Thus, force measurements from different pulling

techniques can be analyzed within a common framework. Other

findings of this work include derivation of physical criteria for

determining when device and handle effects become important

and uncovering signatures in k(F) and FR( _F) for identifying

these effects.

Our approach can easily be extended to other situations.

First, the effect of multiple handles and devices as well as multi-

domain molecules can be included. In such cases, w will need to

be modified to incorporate the compliances from the additional

elements. Second, our approach uses a linear-cubic potential

energy function (Fig. 1b) to describe the energetics of molecular

unfolding or rupture. This choice of function imposes a condi-

tion of negligible frequency of refolding and rebinding. How-

ever, when this condition does not hold true, other energy

functions such as the Morse and double-well potentials might

be more appropriate.37 Finally, the worm-like chain description

of the handle employed here could be replaced by other suitable

constitutive models. For example, the freely-jointed chain

would be a suitable model to treat polymeric handles.

Abbreviations

SMFS single-molecule force spectroscopy

AFM atomic force microscope

WLC worm-like chain
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