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Abstract

The pressure-enthalpy driven molecular dynamics technique, developed in a companion paper [1], is used
to compute various thermodynamic properties for the Lennard–Jones (LJ) fluid. These properties include the
vapor–liquid coexistence curve, the critical point, the Joule–Thomson coefficient and inversion curve, and a com-
plete vapor-compression refrigeration (VCR) cycle. The technique provides a simple and effective means of utilizing
molecular dynamics to sample different thermodynamic state points. Results are as accurate as those obtained using
Monte Carlo (MC) methods. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a companion to the present paper [1], a molecular dynamics technique was presented that enables
the direct simulation of isenthalpic pressure changes and isobaric enthalpy changes. The method, called
pressure-enthalpy driven molecular dynamics (PHD-MD), was shown to provide an effective means
for easily and rapidly changing the thermodynamic state point of a system within a molecular dynamics
(MD) formalism. It was shown that reversible as well as irreversible thermodynamic cycles can be directly
simulated. Two versions of the PHD-MD method were developed: a constraint-based method, referred
to asNṖ Ḣc, and an extended system approach, referred to asNṖ Ḣe.

In the present work, we show how the PHD-MD technique can be utilized in a straightforward manner
to calculate a range of different thermodynamic properties of practical interest, including the vapor–liquid
coexistence curve and the Joule–Thomson coefficient and inversion curve. We also show how one can
directly simulate a complete vapor-compression refrigeration (VCR) cycle as well as obtain accurate
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estimates of critical points using the method. Thermodynamic calculations of this nature are most of-
ten performed using Monte Carlo (MC) methods, due to the ease with which different thermodynamic
state points may be simulated with MC as compared to MD [1]. Unfortunately, there are a number of
technical difficulties that must be overcome to incorporate efficient MC methods into generalized molec-
ular modeling packages that use high-level forcefields. This is one of the barriers that has prevented
the more widespread use of atomistic simulations for thermodynamic property calculations by indus-
trial researchers and “non-experts” [2]. On the other hand, there aremanycommercial and academic
codes that enable users to perform MD simulations on a wide range of molecules using advanced force-
fields. The PHD-MD method can be easily incorporated into these existing MD codes, and thus enables
thermodynamic calculations of the type described here to be readily performed with MD.

2. Simulation details

All calculations were performed on a Lennard–Jones (LJ) 12-6 fluid using either theNṖ Ḣc or NṖ Ḣe

algorithm. Reduced units were used throughout. The simple LJ system was chosen because it has been
extensively studied, making comparisions with other simulation techniques easier. We emphasize that the
PHD-MD method is completely general, and can be applied to molecular as well as atomic systems. We
have found that theNṖ Ḣe algorithm is preferred over theNṖ Ḣc method when working with a molecular
system, as it avoids complications inherent in the application of constraints to internal degrees of freedom.
We prefer theNṖ Ḣc method for atomic systems, although both methods yield identical thermodynamic
results, as shown below and elsewhere [1]. Other details, including a full derivation of the equations of
motion and definitions of variables referred to below, are provided in the companion paper to this work [1].

3. Applications

3.1. Joule–Thomson coefficient and inversion curve

The Joule–Thomson coefficient is a measure of how much the temperature of a fluid changes as pressure
is changed at constant enthalpy and is defined as

µJT ≡
(

∂T

∂P

)
H

(1)

It is an important property for fluids used in refrigeration and liquefaction processes [3]. It is also a
critical parameter in the extraction of gas from high-pressure, high-temperature oil reservoirs [4]. Given its
importance, it is desireable topredictµJT for a given fluid under various conditions. This can be done with
equations of state, but unfortunately these equations are often inaccurate for multi-component mixtures
at state points far from the experimental conditions at which the equation of state was parameterized.
Thus, there is obvious utility in being able tocalculateµJT directly from a molecular simulation of the
fluid. This can be done in a straightforward fashion using the PHD-MD method by first driving the system
to the desired intitial thermodynamic statepoint [1] and then recording the change in temperature that
results from a small isenthalpic pressure change. Fig. 1 shows the results of many such calculations for
a system comprised of 256 LJ particles at an enthalpyHset = 2.0, using both the constraint (NṖ Ḣc)



L.I. Kioupis et al. / Fluid Phase Equilibria 200 (2002) 93–110 95

Fig. 1. Temperature vs. pressure at constant enthalpyH = 2.0. The slope of the curve is the Joule–Thomson coefficient. The
solid symbols are results from theNṖ Ḣc algorithm, while the open symbols are calculated using theNṖ Ḣe method. They are
identical within the statistical uncertainty of the calculations. The point at whichµJT = 0 is known as the inversion point.

and extended system (NṖ Ḣe) approach. For theNṖ Ḣc method, a reduced time step of�t = 0.002 was
used, and the pressure was changed in small increments of�P = 0.05 every 30,000 time steps. A Gear
predictor–corrector algorithm was used to integrate the equations of motion. Each filled triangle in the
figure represents one 30,000 time step calculation. Averages were computed over the last 25,000 steps after
waiting 5000 steps for the system to equilibrate. For the results presented here, the pressure and enthalpy
driver time constants wereRP = 300 andRH = 300, respectively. Larger values (i.e. slower rates of
change) were also tested at selected points and found to give identical results. For theNṖ Ḣe results, shown
as open circles in Fig. 1, a time step of�t = 0.0025 was used, and each pressure interval was simulated
for 15,000 time steps. The constantsRP andRH were both set at 150 to obtain faster equilibration, and
pressure increments were�P = 0.1. A time-reversible reference system propagator algorithm (rRESPA)
Verlet integrator was used for the simulations [5,6]. This integrator is more ammenable to theNṖ Ḣe

method than theNṖ Ḣc method. Despite these small differences in simulation details, the isenthalps
computed by the two methods agree perfectly. By examining Fig. 1 it can be observed that as the fluid is
compressed, the temperature increases at low pressures but then decreases at high pressures. This means
the Joule–Thomson coefficient is positive at low pressure, but negative at high pressure. The point where
µJT = 0 is known as aninversion point. For the enthalpy chosen here (Hset = 2.0), the inversion point
occurs atP = 1.15 andT = 2.0.

The molecular-level basis for the inversion point, although well understood, is made obvious in Fig. 2
by noting how various thermodynamic quantities change under isenthalpic compression. The potential
energy,Φ, decreases as the pressure increases. This is due to the fact that attractive intermolecular
interactions increase as the molar volumeV (i.e. intermolecular separation) decreases. The change is
greatest at low pressure, where molar volume changes are greatest. This can be seen clearly in Fig. 3,
which shows that the compression ratio is greatest at low pressure. At higher pressure there has already
been a significant reduction in molar volume; increasing the pressure does little to change the relative
separation of molecules. This of course is due to the nature of the LJ potential function, which has a



96 L.I. Kioupis et al. / Fluid Phase Equilibria 200 (2002) 93–110

Fig. 2. The dependence of the different energy terms on pressure for the isenthalpH = 2.0. Pressure isP , kinetic energy isK
and potential energy isΦ. Other symbols are defined in the text or figure.

steep repulsive core at small intermolecular separation. Since thePVenergy in Fig. 2 increases at nearly
a constant rate with pressure, the kinetic energyK has to go through an inversion point to compensate
for the changes inPVandΦ while still keepingH constant.

The locus of pressure–temperature points whereµJT = 0 is known as the Joule–Thomson inversion
curve. Inversion curves are important for the same reason Joule–Thomson coefficients are important. They
are extremely difficult to obtain experimentally, since it is necessary to measure volummetric properties
at up to five times the critical temperature and 12 times the critical pressure [7]. The prediction of
inversion curves is among the severest tests of an equation of state, or for that matter, of a molecular

Fig. 3. Molar volume vs. pressure atH = 2.0.
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Table 1
Joule–Thomson inversion temperatureT and pressureP at different molar enthalpiesh using the constraint and extended system
methods. The results shown are in reduced units. Numbers in the parentheses represent statistical uncertainties in the last reported
digits

h Constraint Extended system

P T P T

−1.5 0.47(2) 1.30(1) 0.45(2) 1.30(1)
−0.5 0.67(2) 1.49(1) 0.70(3) 1.48(1)

0.0 0.83(3) 1.59(2) 0.84(2) 1.58(2)
0.5 0.88(3) 1.68(2) 0.94(3) 1.68(2)
2.0 1.15(3) 2.00(2) 1.15(3) 2.00(2)
3.0 1.25(4) 2.23(2) 1.24(4) 2.23(2)
4.0 1.29(6) 2.47(2) 1.32(7) 2.47(2)
5.0 1.32(4) 2.73(3) 1.35(4) 2.73(3)
6.0 1.40(4) 3.00(3) 1.40(4) 3.00(3)
7.0 1.36(4) 3.28(3) 1.32(4) 3.28(3)
9.0 1.20(4) 3.89(4) 1.20(4) 3.88(4)

11.0 1.01(3) 4.55(4) 1.00(3) 4.54(4)
12.0 0.85(3) 4.90(5) 0.85(4) 4.89(5)
13.0 0.72(4) 5.26(5) 0.70(3) 5.25(5)
15.0 0.30(3) 6.00(6)

simulation method or intermolecular forcefield. The inversion curve for the LJ fluid was computed using
the PHD-MD method in the following way. Several isenthalps were simulated in a manner similar to that
used to generate the isenthalp shown in Fig. 1. Each was fit with a polynomial, and the inversion point was
then determined analytically and confirmed graphically. The results of these computations, using both the
contraint and extended system methods, are presented in Table 1 and are plotted in Fig. 4 as open squares
and open triangles, respectively. The two methods yield identical inversion curves, within the statistical
accuracy of the simulations. The inversion curve predicted by the LJ equation of state developed by
Johnson and et al. [8] is shown as a solid line, while previous simulation results from Colina and Müller
[9,10], Heyes and Llaguno [11], and Escobedo and Chen [12] are also shown. Since the equation of state
was developed using several different simulation results and is highly accurate for many other properties,
it is safe to assume that it is the “correct” result.

Each of the simulation results shown in Fig. 4 were obtained in a different manner. Heyes and Llaguno
[11] were the first to attempt the calculation of the LJ inversion curve using molecular simulation. These
authors attempted to generate isenthalps using standard isothermal–isobaric (NPT) MD simulations.
They adjusted the temperature of the simulations using a least square extrapolation procedure to obtain
predetermined values of the enthalpy. Their method yields reliable values only at low temperature; at
temperatures >2.0, the method shows a great deal of scatter and does not conform with the other results.
Colina and Müller [9,10] usedNPTMonte Carlo simulations to generate a series of isobars. They estimated
the inversion point by looking for the location of an extrema in the isobars, much like the way in which
inversion points are obtained experimentally. Their results follow the prediction from the equation of state
much more faithfully than do those of Heyes and Llaguno, although there is some discrepancy at higher
temperatures. Escobedo and Chen have recently reported results for the LJ inversion curve using a novel
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Fig. 4. Inversion curve for the LJ fluid. Open squares are simulation results from the constraint method, while open triangles are
from the extended system method simulations. Filled circles are from the Monte Carlo simulations of Colina and Müller [9,10].
Filled triangles are from MD simulations by Heyes and Llaguno [11], and filled diamonds are MC/Gibbs–Duhem integration
results from Escobedo and Chen [12]. The solid line is the prediction from an accurate equation of state [8].

integration scheme in conjunction withNPTMonte Carlo simulations [12]. Their results follow those of
Colina and Müller, but show an even closer match with the equation of state prediction. The fact that the
MC simulation results are more accurate than the results obtained using conventional MD comes as no
surprise. As stated in a previous work [1], MC methods are generally superior to MD for thermodynamic
property calculation, mainly because one can exert much greater control over the state points being
simulated. The results in Fig. 4 confirm, however, that the PHD-MD method does not suffer from the
same drawbacks as does conventional MD. The PHD-MD results match the equation of state prediction
and the simulation results of Escobedo and Chen almost exactly. In particular, the high temperature leg of
the inversion curve, where experimental and simulation uncertainty is greatest, is accurately captured by
the simulations. This stringent test demonstrates that the PHD-MD technique enables one to easily move
between state points to accurately compute thermodynamic properties while still utilizing a relatively
straightforward MD technique.

3.2. Vapor-compression refrigeration cycle

The PHD-MD method can be used to calculate a number of other properties of practical interest. In
this section, the technique is used to simulate a complete VCR cycle for the LJ fluid. The VCR cycle
simulated here is shown schematically in Fig. 5. We stress that this is not a particularly realistic nor
optimal refrigeration cycle. An actual VCR cycle would operate well below the critical pressure. This
particular cycle was chosen for convenience and to demonstrate the capabilities of the PHD-MD method.
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Fig. 5. A schematic andP–H plot of the vapor-compression refrigeration cycle simulated in this work.

The fluid goes through different regions of the LJ fluid phase diagram, including the supercritical, liquid,
vapor, and two phase vapor–liquid region. It thus provides an interesting system of study, as well as a
rigorous test of the method.

VCR is the method most commonly employed in residential and automotive cooling applications. The
VCR cycle involves the following four steps [3]:

1. Starting from state 1, the fluid (i.e. refrigerant) passes through an adiabatic valve where it undergoes
a Joule–Thomson expansion (path 1→2). The pressure of the fluid is reduced to the saturation liquid
pressure at state 2.

2. Next, the refrigerant goes through an evaporator that operates under constant pressure conditions (path
2 → 3). During this stage heat is absorbed by the refrigerant, which results in an increase in enthalpy
�H23. The refrigerant is evaporated, reaching a saturated vapor state (state 3). The amount of heat
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�H23 is the amount of heat that is removed from the chamber being refrigerated and determines the
cooling action of the refrigerant.

3. During the path 3→ 4, the vapor exiting the evaporator is compressed back to the initial pressure,
which is the operational pressure of the cooler. This is done using a compressor that typically op-
erates under adiabatic conditions. Work is done on the fluid during this process, so the enthalpy of
the fluid increases. For an ideal compressor this process takes place isentropically and the increase
in the enthalpy of the fluid equals to�H34 = ∫

V dP . In fact, no real compressor performs a true
isentropic compression. Usually, this step is irreversible due to friction between the machine elements
and the fluid. Since the compressor operates under adiabatic conditions, the irreversible entropy pro-
duction results in an additional increase in enthalpy over that which results from an isentropic process.
Therefore, a typical route during this stage is shown in Fig. 5 with the dashed line.

4. Finally, in path 4→ 1, the refrigerant flows through a heat exchanger (i.e. a cooler). Heat is removed
under isobaric conditions and the fluid is brought back to its initial state 1. In an actual VCR cycle,
the heat exchanger is typically a condenser, but is represented simply as a cooler for this example.

The refrigeration cycle shown in Fig. 5 can bedirectly simulated using the PHD-MD method. To
demonstrate this, we consider the refrigerant to be a LJ fluid consisting of 500 particles. TheNṖ Ḣc

method is used along with a predictor–corrector integration scheme and a reduced time step ofτ = 0.001.
To generate reversible paths, very small changes in state variables are made, similar to that described
in the previous paper [1]. Small step changes in pressure or enthalpy are imposed every 60,000 time
steps and equilibrium averages are computed over the last 50,000 time steps of each interval. A series of
equilibrium points are generated with this process and the paths produced are shown in Fig. 6.

To simulate the cycle shown in Fig. 6, four independent state variables that define the operational con-
ditions of the VCR cycle must be specified. For the calculations performed here, we chose the operational
pressures of the coolerPc = 0.3 and evaporatorPe = 0.0772. Saturated liquid and vapor enthalpies

Fig. 6. TheP–H plot of the simulated vapor-compression refrigeration cycle. Open symbols show the simulation results for a
“forward” cycle (points 1→ 2→ 3→ 4), while the solid line shows a simulation of the “reverse” cycle (1→ 4→ 3→ 2). The
paths are identical, indicating that the simulations generate reversible cycles.
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Table 2
Average equilibrium quantities for the forward (1→ 2 → 3 → 4 → 1) and backward (1→ 4 → 3 → 2 → 1) cycles. The
results shown are in reduced units. Numbers in the parentheses represent statistical uncertainties in the last reported digits

State point P h e T v

Forward
1 0.300(0) −1.948(0) −2.427(4) 1.223(7) 1.598(7)
2 0.0772(0) −1.948(0) −2.084(3) 1.206(6) 1.759(5)
3 0.0772(0) 1.757(0) 0.986(6) 1.195(4) 10.0(1)
4 0.300(0) 3.306(2) 1.711(9) 1.959(5) 5.32(3)
1 0.300(0) −1.948(0) −2.426(4) 1.226(6) 1.595(5)

Backward
1 0.300(0) −1.948(0) −2.425(3) 1.232(8) 1.591(5)
2 0.0772(0) −1.948(0) −2.084(3) 1.199(6) 1.764(5)
3 0.0772(0) 1.784(3) 0.995(6) 1.194(4) 10.22(9)
4 0.300(0) 3.306(1) 1.709(5) 1.958(5) 5.32(2)
1 0.300(0) −1.948(0) −2.426(4) 1.227(8) 1.595(5)

(H2 = −1.948 andH3 = 1.757) were chosen by referring to previous simulation work of Lotfi et al. [13],
where they report phase equilibria data for the LJ fluid obtained using theNPT+ test particle method.
The cycle was simulated using the following process:

• Path 1 → 2: starting from the state point ofPset = 0.3 andHset = −1.948, which represents the
high-pressure low-enthalpy state (state 1) at the exit of the cooler (see Fig. 6), an isenthalpic expansion
is performed by changingPsetfrom 0.3 to the saturation pressure 0.0772 (state 2). During this procedure
a series of 20 equilibrium points were generated that represent the true isenthalpic path 1→ 2 (see
Fig. 6). The average quantities computed at the initial (state 1) and final (state 2) equilibrium points
are shown in Table 2.

• Path2 → 3: starting from state 2, the evaporation stage (path 2→ 3) is generated by increasingHset

gradually fromH2 = −1.948 toH3 = 1.757. During this process 30 step changes were imposed. The
final state conditions (state 3) are presented in Table 2.

• Path 3 → 4: in the path 3→ 4, the fluid undergoes an isentropic compression. To see how this is
accomplished, we refer to our previous work [1], where it was shown that the time rate of change in
the enthalpy under theNṖ Ḣc algorithm is

Ḣ = Ṗ V − α
∑

i

miv
2
i (2)

whereṖ is the time rate of change in pressure, the sum is over all atomsi of massmi and velocityvi .
The coefficientα constrains the enthalpy and is related to the change in entropy of the system via the
following equation

−α
∑

i

miv
2
i = T Ṡ (3)

An isentropic compression can, thus, be accomplished by removing the enthalpy driver and settingα =
0, as in the standardNPH constraint algorithm. Unlike the standard method, however, the differential
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pressure driveṙP remains to drive the pressure from states 3 to 4. Sinceα = 0, the entropy is constant,
but the enthalpy changes according to the first law of thermodynamics for adiabatic compressibility,
�H = ∫

V dP . During this process 20 equilibrium points were generated. The pressure was increased
to 0.3 and the path followed is shown in Fig. 6. The final value of the enthalpy, along with other
thermodynamic equilibrium average quantities are shown in Table 2.

• Path4 → 1: finally, the isobaric cooling process (4→ 1) was simulated. The same approach as that
used in stage 2→ 3 was utilized. Starting from the final value of the enthalpy generated during the
compression stage (state 4), small reductions inHset were performed in 40 steps until the system was
driven to its initial enthalpy at state 1 (H1 = −1.948). Comparing the initial and final states (states 1)
from Table 2, we see that the cycle closes and the system returns to its initial state correctly.

The refrigeration cycle was also simulated backwards (i.e. following the route 1→ 4 → 3 → 2 → 1).
The forward and backward paths are shown in Fig. 6 as open symbols and a solid line, respectively. A
P–V plot of the cycle is also shown in Fig. 7. The agreement between the two routes is excellent, with
both cycles returning the system to its initial state 1. Results of the simulations at the final states after
each backward path are also presented in Table 2. The results of the saturated temperature and saturated
volumes (states 2 and 3) computed during the forward and backward cycles compare very well with the
values ofT = 1.2, vl = 1.766 andvv = 10.13 reported by Lotfi et al. [13] (see Table 2).

The energy balances are calculated during the cycle using the first law of thermodynamics, with results
presented in Table 3. The calculations were performed for both the forward and backward cycles. The
molar energy terms shown in Table 3 are not time integrals over the course of the entire simulation, but
rather were calculated from the averages at the equilibrium states (1, 2, 3, or 4) of the cycle. The enthalpy
�h and internal energy�e differences reported in Table 3 were computed using the final and initial
states in each path. The work terms

∫
v dP and

∫
P dv were calculated by integrating the routes shown

in Fig. 7, and the quantities
∫

T ds were calculated from the differences
∫

T ds = �h − ∫
v dP and∫

T ds = �e+∫
P dv. Examining the results presented in Table 3, we see that�h = 0 and�e = 0 since

the simulations produce a closed cycle. The quantity
∫

T ds computed from the time integral− ∫
3kTα dt

Fig. 7. Simulated vapor-compression cycle on aP–V plot.
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Table 3
Energy balance calculations for the forward (1→ 2 → 3 → 4 → 1) and backward (1→ 4 → 3 → 2 → 1) cycles. The results
shown are in reduced units. Numbers in the parentheses represent statistical uncertainties in the last reported digits

Path �h
∫

v dP �h − ∫
v dP �e

∫
P dv �e + ∫

P dv − ∫
3kTα dt

Forward
1 → 2 0.000(0) −0.372(2) 0.372(2) 0.343(7) 0.028(2) 0.371(9) 0.368(8)
2 → 3 3.705(0) 0.000(1) 3.705(1) 3.070(9) 0.635(2) 3.705(11) 3.688(30)
3 → 4 1.549(2) 1.527(2) 0.022(4) 0.725(15) −0.702(2) 0.023(17) –
4 → 1 −5.254(2) 0.000(1) −5.254(3) −4.137(13) −1.117(3) −5.254(16) −5.288(42)
Sum 0.000(1) 1.155(6) −1.155(8) 0.001(8) −1.156(9) −1.155(17) −1.232(80)

Backward
2 → 1 0.000(1) 0.372(2) −0.372(3) −0.341(6) −0.031(2) −0.372(8) −0.376(8)
3 → 2 −3.732(4) 0.000(1) −3.732(5) −3.079(9) −0.653(1) −3.732(10) −3.742(31)
4 → 3 −1.522(4) −1.538(2) 0.016(6) −0.714(11) 0.727(2) 0.013(13) –
1 → 4 5.254(1) 0.000(1) 5.254(2) 4.135(9) 1.118(2) 5.253(11) 5.230(42)
Sum 0.000(1) −1.166(6) 1.166(7) 0.001(8) 1.161(7) 1.162(15) 1.112(81)

during the course of the simulation is also shown for comparison. The results agree despite the numerical
errors, noise and irreversibilities inherent in a continuous run.

As indicated in our previous work [1], it is possible to introduce irreversibilities by using a very fast
compression rate. It is for this reason that values of the pressure change rate constants (kP ) and pressure
step sizes (�Pset) were chosen carefully so as to obtain an isentropic compression in moving between
states 3 and 4. It is also possible to generate irreversibilities in the compression path (3→ 4) by using
too large a timestep. Fig. 8 shows results for the compression path (3→ 4) from simulations using a

Fig. 8.P–H paths taken during compression–decompression steps (3↔ 4) using different simulation timesteps. Open circles
are for a reversible path with a small timestep. The dashed line shows the irreversibilities introduced by using too large a
timestep. The solid diamonds show that a reversible path may be recovered even using a large timestep by constraining the
entropy of the system during compression.
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small timestep (τ = 0.001) and a larger time step ofτ = 0.003. As mentioned previously, in generating
the path between states 3 and 4, the PHD-MD method reduces to anNPH MD simulation in which the
pressure is being driven (i.e. the enthalpy controllerα = 0). Clearly, the forward and reverse paths do
not coincide when the large timestep is used, indicating that the simulation is not reversible. The origin
of the irreversibility is the accumulation of numerical error that effectively causes an increase in the
entropy of the system. This drift is highly dependent on the size of the time step. Ideally, one would like
to use as large a timestep as possible but still simulate reversible paths. This is especially important when
simulating large molecules whose equilibration times are much longer than that of LJ atoms. For these
systems, the use of large timesteps is essential to prevent simulations from requiring prohibitive computer
resources.

This problem can be remedied by resorting to the same concepts as were used to drive pressure and
enthalpy in the PHD-MD method. To guarantee that an isentropic route isalwaysobtained, a new friction
coefficientαS is reintroduced into the equations of motion in place ofα and the termQ = ∫

dH −∫
V dP

is forced to zero (see [1] for details). The friction coefficientαS serves tocontrain the entropyduring the
simulation. Starting from

Ḣ − V Ṗ = Q̇ (4)

and substituting Eq. (2) foṙH leads to

αS = − Q̇∑
i miv

2
i

(5)

A differential controller is used to drive the terṁQ to zero (Q̇ → 0).

Q̇ = kQ(−Q) = −kQ

(∫
dH −

∫
V dP

)
(6)

Substituting the above driver into Eq. (5) results in a new set of equations of motion (refer to [1] for
implementation details). In order to use this “entropy control” scheme, the integrals

∫
dH and

∫
V dP

need to be continuously computed during the course of the simulation. We use a simple numerical Simpson
method, although any suitable technique will do. The new equations of motion automatically transfer heat
to or from the system so that the enthalpy increase

∫
dH is always equal to the work

∫
V dP imposed by

the compression, thereby generating a true isentropic path. The simulated system is no longer adiabatic
(α �= 0). Indeed, some heat is removed from the system in order to “dissipate” the entropy generated by
numerical drifts. This entropy control scheme can be thought of as using an equivalent Newton–Raphson
technique to rescale everything in order to achieve isentropic path generation, although it achieves this
in a smooth and natural manner.

The solid diamonds in Fig. 8 show the results of a compression–decompression cycle between states 3
and 4 using the entropy control scheme and a large time stepτ = 0.003. The paths are now reversible and
indistinguishable from those generated using a time stepτ = 0.001. In fact, we simulated the entire VCR
cycle with a larger time step ofτ = 0.003 and found excellent agreement with the simulations performed
using the smallerτ = 0.001 time step. The imposition of the various drivers stabilizes the system so that
larger time steps can be used. In this way, the PHD-MD technique has similarities with other techniques
that use damping methods to utilize larger timesteps [14].

From a practical standpoint, one is most interested in understanding how a particular fluid or fluid
mixture performs as a refrigerant. That is, one would like to know what the operating temperatures and



L.I. Kioupis et al. / Fluid Phase Equilibria 200 (2002) 93–110 105

pressures are of the evaporator and cooler (condenser), as well as how much heat can be carried by a given
quantity of fluid. All these design parameters can be determined for a given refrigerant from PHD-MD
simulations without resorting to the detailed cycle calculations performed here. One simply must drive
the system to each of the four state points shown in Fig. 5 and calculate equilibrium properties at each
of these conditions. For this purpose, there is no need to impose small step changes and generate the full
paths, as was done here. Therefore, the operational conditions of the cycle can be determined quickly for
any fluid for which accurate potential parameters exist. It is not necessary to know in advance what the
thermodynamic state point is at each point in the VCR cycle. As has been shown here, only the operational
pressures (Pc andPe) and saturation enthalpies are required. As an alternative to choosing the saturation
enthalpies (which may not be known), the heat or work change for a given leg of the cycle could be
specified and used to locate the next point in the cycle. In any case, only four independent variables are
required to perform the VCR cycle calculation. In essence, the PHD-MD method enables one to perform
VCR cycle calculations in much the same way that would be done with knowledge of the experimental
PH phase diagram for the refrigerant. In this case, however, the phase diagram does not need to be known
a priori, only the intermolecular potential function is required. The simulation serves as a substitute for
the phase diagram. Thus, the PHD-MD method provides a straightforward approach to “translating” the
potential function into a functionalPH diagram. This method should be useful in the search for safe and
environmentally benign refrigerants.

Finally, we show in Fig. 9 aT –V plot of the VCR cycle. Interestingly, the temperature during the
evaporation stage is not constant at its saturation value, but instead shows an oscillation. This oscillation
is similar to pressure oscillations seen in the LJ coexistence region during canonical ensemble MC
simulations [15,16]. These oscillations are attributed to the free energy costs associated with creating
vapor–liquid interfaces in the finite-sized system. Since in the PHD-MD simulations the pressure (and
enthalpy) are constrained and thus cannot vary, the temperature shows the fluctuation. The temperature
behavior within this metastable region is also reminiscent of the pressure fluctuations observed when

Fig. 9. The temperature–volume trace that results from the forward and backward simulation of the vapor-compression refrig-
eration cycle. Note the change in temparature that occurs during the phase change between points 2 and 3.
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an isotherm for a cubic equation of state is plotted (so-called “van der Waals loops”). In the two phase
unstable region, a cubic equation of state predicts a pressure that goes through a minimum at small molar
volume and a maximum at large molar volume. In Fig. 9, the temperature goes first through a maximum
and then a minimum as the enthalpy (molar volume) increases. As described in the next section, this
information can be exploited to determine vapor liquid coexistence curves and estimate critical points
using MD.

3.3. The two phase region

Arguably, one of the most important practical applications of molecular simulation is the determination
of phase coexistence. Among the many methods used to compute phase behavior, three have emerged
as the most popular: the Gibbs ensemble MC procedure [17,18], the Gibbs–Duhem integration method
[19], and histogram reweighting grand canonical MC schemes [20,21]. Although the Gibbs–Duhem
method can be used in conjunction with isothermal–isobaric MD, it is typically carried out using MC
simulations. The other two simulation methods are strictly MC techniques. The Gibbs–Duhem method
has an advantage over the other two methods in that it does not require particle exchanges or insertions.
These insertion moves can be quite difficult to perform for dense phases. Although the Gibbs–Duhem
method does not suffer from this limitation, it does require an initial point on the saturation curve [19],
which must come from some other source.

The PHD-MD method can be used to compute coexistence curves. To do this, the enthalpy of the
system is slowly changed at constant pressure. Isobars at pressures above the critical point will show a
monotonic increase in the density as the enthalpy is reduced. Isobars below the critical point will pass
through the two phase region. As was seen in Fig. 9, the temperature will oscillate due to the formation
of vapor–liquid interfaces. At the critical pressure, the isobar should exhibit an inflection point. The
coexistence envelope can be estimated using a procedure analogous to a standard Maxwell construction,
although in the present case the simulation is along an isobar rather than an isotherm. To show how this
is done, we start with the equifugacity condition between the pure liquid and vapor phase [22]

ln φ l = ln φv (7)

If we now substitute the formula

ln φ =
∫ ∞

v

(
Pv

RT
− 1

)
dv

v
+

(
Pv

RT
− 1

)
− ln

(
Pv

RT

)
(8)

into Eq. (7) and simplify, assuming constant pressure conditions, it can be shown that∫ vv

vl

(
1

T sat
− 1

T

)
dv = 0 (9)

whereT sat is the saturation temperature andvl andvv the saturated liquid and vapor volumes, respectively.
The coexistence points are found by applying Eq. (9) to the simulated isobar and solving for the three
unknownsT sat, vl andvv.

For these simulations, a system composed ofN = 1372 LJ atoms was used with a fixed potential cut-off
radius of 2.5σ . The isobars were obtained by starting the simulation in the pure liquid phase at an initial
enthalpy ofHl . The pressure was kept constant atPset using theNṖ Ḣc method, while the enthalpy was
increased incrementally with steps of�H ≈ 0.0729 until a final enthalpy ofHv was reached, whereby
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Table 4
Isobar pressures, initial and final molar enthalpies, and the computed coexistence temperatures and densities

Pset Hl Hv T sat ρsat
l ρsat

v

0.04511 −3.644 2.915 1.026 0.6914 0.0634
0.05974 −3.279 2.915 1.102 0.6457 0.0825
0.07718 −2.915 2.551 1.176 0.5941 0.1061
0.0973 −2.551 2.551 1.243 0.5348 0.1373
0.1204 −1.093 2.187 1.303 0.4606 0.1795
0.130 −1.093 2.187 1.324 0.4243 0.2104
0.132 −1.093 2.187 1.329 0.4115 0.2146
0.135 −1.093 2.187 1.334 0.3955 0.2249
0.137 −1.093 2.187 1.338 0.3845 0.2372
0.140 −1.093 2.187 1.344 0.3641 0.2459
0.142 −1.093 2.187
0.144 −1.093 2.187
0.146 −1.093 2.187
0.148 −1.093 2.187
0.150 −1.093 2.187

the fluid was a pure vapor. Values of the enthalpy and pressure are reported in Table 4. After each step
change in the enthalpy, the fluid was allowed to equilibrate for 10,000 timesteps at that state point. The
average steady-state density and temperature values at this state point were then calculated from the next
30,000 timesteps, after which another step change in the enthalpy was imposed. Isobars were obtained at
different values ofPset, both above and below the critical pressure.

The isobars were found to show some fluctuations. To obtain accurate coexistence curves, these fluc-
tuations needed to be filtered out. We employed a running average type filtering of each isobar, and the
resulting smooth isobars are plotted in Fig. 10 as dashed lines. The saturation temperatures and volumes
were obtained from Eq. (9) using a numerical scheme whereby the integral value at closely spaced trial
T sat values was computed. A sign change in the value of the integral denoted the whereabouts of the
correctT sat. The computed values ofT sat, vl andvv are noted in Table 4, and also plotted in Fig. 10 as
open squares. For pressuresPset > 0.140, the isobars do not show any inflection points and are, hence,
above the critical point. Alongside, we have also plotted the coexistence data obtained by Lotfi et al.
[13] as a dark dashed curve. It is observed that there is a slight mismatch between the two results for
the low density leg of the coexistence curve. This could be due to the fact that Lotfi et al. used a larger
cut-off of 5.7σ than was used here. It could also be due to inaccuracies with the PHD-MD approach.
We observed that the isobars showed greater fluctuations in the two phase region near the vapor phase
as the pressure was reduced. Below a pressure ofP = 0.04511, an instability arose and the system
exhibited a tremendous jump in density with a small change in enthalpy. Coexistence points could not be
determined below this pressure. This instability is likely due to the fact that, away from the critical point,
the energy difference between the metastable vapor and liquid phases becomes so great that the two phase
region cannot be adequately simulated with only 1372 atoms. Much larger systems would be required to
accurately simulate both phases in this region. For this reason, the PHD-MD results are expected to be
least accurate for the vapor phase at low pressure and points out a weakness of the method for computing
coexistence curves away from the critical point. Despite these problems, the high-pressure region of the
coexistence curve is captured surprisingly well.
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Fig. 10. Dashed lines are simulated isenthalps. Open squares are estimates of coexistence points from the simulation. The
coexistence curve computed by Lotfi et al. [13] is shown for comparision. Inset shows detail of simulation results close to the
critical point.

Interestingly, the stabilization afforded by the pressure and enthalpy drivers enables the system to be
simulated arbitrarily close to the critical point. The inset in Fig. 10 shows a series of isobars near the
generally accepted critical point for the LJ fluid. From the inflection point in these isobars, the critical
pressure is estimated to lie within the range 0.140 < Pc < 0.142. This is higher than the generally
accepted value, which lies in the range 0.127≤ Pc ≤ 1.31 [21,23], although other estimates have placed
the critical pressure as high asPc = 0.147 [24]. The critical temperature is estimated to be in the range
1.344 < Tc < 1.347, in fair agreement with a recent estimate ofTc = 1.31 [21]. The critical density is
estimated asρc ≈ 0.304, which agrees perfectly with an early estimate [23], but is slightly lower than
ρc = 0.316, the value determined by more recent and extensive calculations [21]. We believe that the
estimates of the critical point obtained using the PHD-MD method are encouraging, given that they were
based on MD simulations carried out with a single box size (i.e. no finite size scaling methods were used).
They appear to be at least as accurate as those obtained using conventional simulation methods, and can,
thus, provide a reasonable first estimate of a critical point. It would be interesting to carry out a more
extensive study of the method and see if the results can be made even more accurate.

4. Conclusions

Results from a new pressure-enthalpy driven molecular dynamics simulation method were presented.
Using the LJ fluid as a test case, it was shown how thermodynamic derivatives such as the Joule–Thomson
coefficient and inversion curve can be computed directly from a single molecular dynamics simulation. The
approach was also used to simulate a complete vapor-compression refrigeration cycle and a vapor–liquid
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coexistence curve, as well as obtain a reasonable estimate of the critical point. The method can be im-
plemented in any standard molecular dynamics package with only small modifications to the equations
of motion. It provides a straightforward means for driving a system to any desired thermodynamic state-
point using molecular dynamics, and thus represents an attractive means for probing the thermodynamic
properties of complex systems.

List of symbols
e molar internal energy
h molar enthalpy
H enthalpy
Ḣ rate of change of enthalpy
kQ entropy driver time constant
K kinetic energy
mi mass of atomi
N number of molecules in the system
P pressure
Pc critical pressure
Ṗ rate of change of pressure
Q heat
Q̇ rate of heat addition or removal
S entropy
Ṡ time derivative of entropy
T temperature
T sat saturation temperature
Tc critical temperature
vi velocity of atomi

vl , vv molar volume of liquid, vapor phase
V system volume

Greek symbols
α Lagrange multiplier constraining enthalpy
αS Lagrange multiplier constraining entropy
µJT Joule–Thomson coefficient
φ fugacity coefficient
Φ potential energy
ρ density
σ Lennard–Jones size paramterer
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