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S1. Testing for NP dispersion

Given that grafted NPs exhibit strong steric repulsion due to the grafted chains and that
the bare NPs exhibit weak attraction with the matrix, we do not expect to observe signifi-
cant aggregation of the NPs that would otherwise mask the effects of the parameters being
investigated. To confirm that our NPs remain sufficiently dispersed, we computed the radial
distribution function gNP(r) of the NPs, where r is the center-to-center distance between
the NPs. We find that none of the systems exhibit any significant peaks in gNP(r), suggest-
ing that the systems remain reasonably well dispersed. Figure S1 presents gNP(r) of three
of our NP systems most prone to aggregation, which are all observed to exhibit moderate
peaks of height < 1.5. The thumb rules proposed by Kumar et al.,1 based on calculation of
an effective grafting density Γgraft

√
Lgraft and the ratio of the matrix to graft chain length

Lmatrix/Lgraft, also suggest that all our grafted NPs systems should remain reasonably well
dispersed in the polymer matrix. While these rules predict the bare NPs to aggregate, we
do not observe any such aggregation, likely due to the weak attraction present between the
NP surfaces and the matrix chains.

S2. Testing for sampling exhaustiveness.

The PNC systems simulated here are expected to exhibit sluggish dynamics inspite of T >
Tg.2 To test if our simulations are sufficiently long to capture the equilibrium dynamics of
the PNCs, we have computed the self-diffusion coefficient Ds and the rotational relaxation
time τrot of the NPs and of the matrix chains. Table S2 reports the computed Ds and τrot
of NPs for all systems studied; the results for the matrix chains are not reported as their
diffusional and rotational timescales are consistently smaller than or equivalent to those of
the NPs. We find that the characteristic time τdiff ∼ dNP

2/6Ds for the NPs to diffuse a
distance equivalent to their diameter is on the order of 104, which is smaller or comparable
to the length of the MD equilibration period and significantly smaller than the length of an
entire simulation. The rotational timescales τrot, however, are longer, in the range 104–105

for most systems investigated here, i.e., longer than the equilibration period but still much
shorter than the overall simulation lengths. The only exceptions are the system with long
grafts with L = 40, where τrot ≈ 2 × 105 is comparable to the overall simulation length,
and the system with strongly attractive graft/matrix interactions, where τrot ≈ 1.2 × 106 is
significantly longer than the simulation length. That the rotational relaxation time of grafted
NPs can be quite long has already been noted in one study.2 The above calculations indicate
that our simulations should be able to fully capture the entire stress relaxation spectrum for
most of the examined PNC systems except the system with strongly attractive interactions,
which would require prohibitively long simulations.

S3. Energetics of introducing an additional attractive site.

To estimate the enthalpic and entropic changes associated with the introduction of an ad-
ditional attractive bead on the matrix and grafted chains, we have computed the radial
distribution function g(r) between the mutually attractive beads on the grafted and matrix
chains. For the moderately attractive system with natt = 1 attractive bead at the free end of
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each grafted chain and natt = 1 attractive bead in the middle and end of each matrix chain,
we compute g(r) between the centers of the mutually attractive beads on the grafted and
matrix chains. For the strongly attractive system, where there are natt = 2 attractive beads
at the free end of each grafted chain and natt = 2 consecutive attractive beads in the middle
and end of each matrix chain, we compute g(r) between the midpoints of pairs of mutually
attractive beads on the grafted and matrix chains. Figure S4 shows the two g(r) alongside
each other.

One can provide a rough estimate of the difference in the binding free energy ∆Gb of
mutually attractive beads in the two systems via ∆Gb = −kBT ln[Pb,2/Pb,1], where Pb,1
and Pb,2 are the probabilities of observing a “bound state” in the moderately and strongly
attractive case, given simply by the number of bound states in the simulation box divided
by the total number of attractive bead sites in the simulation box, i.e, number of attractive
beads when natt = 1 and number of midpoints of consecutive attractive beads when natt = 1.
It can easily be shown that Pb,i (i = 1, 2) is given by the volume integral over the peaks in
g(r) observed at sufficiently short distances divided by the volume V of the simulation box:

Pb,i ∼
1

V

∫ rcut

0

4πr2g(r)dr, where i = 1, 2 (1)

where rcut is the cutoff distance defining the bound state, assigned as the distance at which
the peak in g(r) levels off (rcut = 1.65 for natt = 1 and rcut = 3.65 for natt = 2). Carrying out
the above integral for both systems, we obtain ∆Gb ≈ −2.2kBT . The maximum potential
energy (enthalpy) that can be gained from adding an additional pair of mutually attractive
beads should equal the depth of the attractive potential well, which is set to φ = −2.5kBT
in our model. Thus, the enthalpic gain can be as large as −2.5kBT whereas the entropic
loss is as small as ∼0.3kBT , leading to a net binding free energy gain of −2.2kBT . Thus, the
enthalpic gain far outweighs the entropic loss when one introduces an additional attractive
bead next to an existing attractive bead in the grafted and matrix chains.
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Table S1: Radius of gyration of the grafted chains and normalized grafting density.a

System Parameter Rg
d Rg,b

e Γ∗f

no.b changec

B/G NP grafting
1 B NA NA 0
2 G 1.55 2.18 1.90
3 B NA NA 0
4 G 1.58 2.18 1.90
5 B NA NA 0
6 G 1.60 2.18 1.90

dNP NP size
2 4.0 1.55 2.18 1.90
4 6.0 1.58 2.18 1.90
6 8.0 1.60 2.18 1.90

fNP NP loading
2 0.06 1.55 2.18 1.90
7 0.12 1.56 2.18 1.90
4 0.06 1.58 2.18 1.90
8 0.12 1.56 2.18 1.90
6 0.06 1.60 2.18 1.90
9 0.12 1.60 2.18 1.90

Lgraft Graft length
10 10 0.74 1.47 0.86
4 20 1.58 2.18 1.90
11 30 2.43 2.72 2.96
12 40 3.28 3.16 3.98

Γgraft Graft density
13 0.1 1.54 2.18 0.48
14 0.2 1.55 2.18 0.95
4 0.4 1.58 2.18 1.90
15 0.8 1.56 2.18 3.80

natt Graft/matrix affinity
2 0 1.55 2.18 1.90
16 1 1.62 2.18 1.90
17 2 1.76 2.18 1.90

a Radius of gyration of matrix chains Rg ≈ 3.16. Statistical uncertainties in all recorded data are smaller than the last
significant figure. b Index identifying different simulation system (same as Table 1) c Only the parameter being changed in the
comparison group of simulation is tabulated (refer to Table 1 for the entire list of fixed parameters). d Radius of gyration of
the grafted chains computed via R2

g = 1
Ngraft

∑Ngraft
i=1

〈
|ri − rcom|2

〉
, where ri is the position of each graft bead, rcom is the

center of mass of the grafted chain, and 〈· · · 〉 represents an ensemble average over all grafted chains and time points. e Radius
of gyration of an “unperturbed” grafted chain, i.e., a polymer matrix chain of the same length as the grafted chain.

f Crowding of grafted chains on NPs quantified in terms of the grafting density normalized by the size of the unperturbed
grafted chains, i.e., Γ∗ = Rg,b

2Γgraft.

4



Table S2: Diffusion coefficient and rotational relaxation time of NPs.

System Parameter Ds
c τrot

d

no.a changeb (×103) (×10−4)
B/G NP grafting

1 B 1.52 ± 0.39 NA
2 G 3.91 ± 0.95 2.28 ± 0.15
3 B 1.12 ± 0.42 NA
4 G 2.71 ± 0.02 5.54 ± 0.44
5 B 0.57 ± 0.19 NA
6 G 2.00 ± 0.58 10.80 ± 3.17

dNP NP size
2 4.0 3.91 ± 0.95 2.28 ± 0.15
4 6.0 2.71 ± 0.02 5.54 ± 0.44
6 8.0 2.00 ± 0.58 10.80 ± 3.17

fNP NP loading
2 0.06 3.91 ± 0.95 2.28 ± 0.15
7 0.12 2.72 ± 1.69 2.40 ± 0.12
4 0.06 2.71 ± 0.02 5.54 ± 0.44
8 0.12 1.27 ± 0.57 6.76 ± 0.53
6 0.06 2.00 ± 0.58 10.80 ± 3.17
9 0.12 1.31 ± 1.07 12.12 ± 1.69

Lgraft Graft length
10 10 2.84 ± 0.67 2.00 ± 0.13
4 20 2.71 ± 0.02 5.54 ± 0.44
11 30 1.74 ± 0.09 15.19 ± 1.60
12 40 2.89 ± 1.98 20.51 ± 0.34

Γgraft Graft density
13 0.1 1.80 ± 0.12 1.63 ± 0.14
14 0.2 2.03 ± 0.55 3.11 ± 0.56
4 0.4 2.71 ± 0.02 5.54 ± 0.75
15 0.8 2.12 ± 0.73 10.74 ± 1.17

natt Graft/matrix affinity
2 0 3.91 ± 0.95 2.28 ± 0.15
16 1 2.03 ± 1.43 6.74 ± 0.56
17 2 2.99 ± 1.97 116.00 ± 9.68

a Index identifying different simulation system (same as Table 1) b Only the parameter being changed in the comparison
group of simulation is tabulated (refer to Table 1 for the entire list of fixed parameters). c Ds was computed from the slope of
the mean square displacement of the NPs as a function of time via Ds = limt→∞

1
6t

〈
|r(t)− r(0)|2

〉
, where r(t) is the position

of NP center at time t and 〈· · · 〉 represents an ensemble average over all NPs and reference time points. d τrot was computed
by fitting the time decay in the autocorrelation of the orientation of the NPs to an exponential function via

〈T(t) ·T(0)〉 ≈ exp(−t/τrot), where the orientation is described in terms of the vector T(t) joining one of grafting points and
the NP center.

5



0 4 8 12 16
r

0

0.5

1

1.5

2

2.5

g(
r)

bare NP, dNP = 4
grafted NP, Γgraft=0.1
grafted NP, Lgraft=10

Figure S1: Inter-particle radial distribution function g(r) obtained for three PNC systems
from Table 1 most prone to NP aggregation: system 7 containing bare NPs of dNP = 4 at
the high loading of fNP = 0.12 (black line); system 13 containing grafted NPs of dNP = 6 at
the small grafting density Γgraft = 0.1 (red line); and system 10 containing grafted NPs of
dNP = 6 with short grafts of Lgraft = 10 (blue line).
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Figure S2: Relaxation times for the five slowest modes p of the matrix chains (a) and for
grafted chains (b) for PNCs with grafted NPs (system 4, Table 1). The symbols represent
τmatrix,p and τgraft,p obtained by fitting the autocorrelation of Rouse modes obtained from
simulations (Eqs. 11 and 13). We were unable to obtain good estimates of the Rouse times
for p > 3 for the grafted chains, as these times became comparable to the smallest time
intervals used for calculating Rouse modes. The dashed lines represent predictions from
Rouse theory via the approximations τmatrix,p ≈ τmatrix,R/p

2 and τgraft,p ≈ τgraft,R/(2p − 1)2

valid for small p.
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Figure S3: Storage modulus (a) and loss modulus (b) of pure polymer matrix of chain length
Lmatrix = 40 at overall monomer density ρpolymer = 0.82 and temperature T = 1. The symbols
represent computed data while dashed lines are guides to the eye.
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Figure S4: Radial distribution function g(r) of distance between mutually attractive beads
for natt = 1 (red) and of distance between the midpoints of mutually attractive bead pairs
for natt = 2 (blue).
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Figure S5: Comparison of the storage and loss modulus of polymers containing grafted NPs
at two different loadings of fNP = 0.06 (blue circles) and 0.12 (red squares) for (a) dNP = 4,
(b) dNP = 6, and (c) dNP = 8. The symbols represent computed data while dashed lines are
guides to the eye.
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Figure S6: Comparison of monomer densities of four different PNCs containing NPs grafted
with chains of different lengths: (a) Lgraft = 10, (b) Lgraft = 20, (c) Lgraft = 30, and
(d) Lgraft = 40. The NPs have a diameter of dNP = 6 and are loaded at fNP = 6 wt%
(φNP = 0.027) in a polymer matrix of chain length Lmatrix = 40. The densities are plotted as
a function of the radial distance from the center of a NP and the contributions from grafted
chains, matrix chains, and grafted chains on neighboring NPs plotted as solid black, red,
and blue lines, respectively.
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Figure S7: Comparison of monomer densities of four PNC systems containing NPs grafted
with chains at different grafting densities: (a) Γgraft = 0.1, (b) Γgraft = 0.2, (c) Γgraft = 0.4,
and (d) Γgraft = 0.8. The NPs have a diameter of dNP = 6 and are loaded at fNP = 6 wt%
(φNP = 0.027) in a polymer matrix of chain length Lmatrix = 40. The densities are plotted as
a function of the radial distance from the center of a NP and the contributions from grafted
chains, matrix chains, and grafted chains on neighboring NPs plotted as solid black, red,
and blue lines, respectively.
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