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Automated quantitative image analysis of
nanoparticle assembly†
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The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for

predicting and engineering the properties of advanced nanocomposite materials. Here we develop a

quantitative image analysis software to characterize key structural properties of NP clusters from experi-

mental images of nanocomposites. This analysis can be carried out on images captured at intermittent

times during assembly to monitor the time evolution of NP clusters in a highly automated manner. The

software outputs averages and distributions in the size, radius of gyration, fractal dimension, backbone

length, end-to-end distance, anisotropic ratio, and aspect ratio of NP clusters as a function of time along

with bootstrapped error bounds for all calculated properties. The polydispersity in the NP building blocks

and biases in the sampling of NP clusters are accounted for through the use of probabilistic weights. This

software, named Particle Image Characterization Tool (PICT), has been made publicly available and could

be an invaluable resource for researchers studying NP assembly. To demonstrate its practical utility, we

used PICT to analyze scanning electron microscopy images taken during the assembly of surface-func-

tionalized metal NPs of differing shapes and sizes within a polymer matrix. PICT is used to characterize

and analyze the morphology of NP clusters, providing quantitative information that can be used to eluci-

date the physical mechanisms governing NP assembly.

1. Introduction

A significant challenge in nanoscience and emerging nano-
technologies is the ability to guide nanoparticle (NP) self-
assembly with precise structural and functional control.
Research efforts to control the spatial distribution of NPs
spans a vast range of nanomaterials, physical properties, and
applications. For example, diffuse networks of C60 and carbon
nanotubes reinforce the mechanical stability of polymer films
to prevent damage or dewetting,1 and percolating networks of
CdSe NPs serve as paths for electron transport within the
active layer of bulk heterojunction photovoltaic cells.2 We and
others have pursued the hierarchical assembly of plasmonic
metal NP clusters and strings for novel electromagnetic
materials that serve to confine light.3,4 In all of the above
cases, NP assembly is highly dependent on interfacial and
interparticle interactions, both of which dictate assembly

events such as nucleation, growth, and coarsening. NP assem-
bly is a highly dynamic process in which NPs aggregate to
form larger clusters whose morphologies evolve with time. The
ability to characterize these evolving NP cluster morphologies
has important consequences for not only understanding the
assembly mechanisms at work, but also for learning how to
program these mechanisms for achieving desired NP cluster
architectures.

The use of image analysis to characterize particle assem-
blies is a well-established practice in materials science. As
early as in 1979, Forrest and Witten Jr.5 used image analysis of
transmission electron micrographs to identify and study the
fractal structure of smoke particle aggregates.5 Since then,
image analysis has been used to characterize colloidal and NP
aggregates in terms of various properties. For example, the size
distribution of such aggregates has been analyzed by indigen-
ously developed image analysis procedures6–8 or via public-
domain image-processing software.9 While several of the
public image analysis software, such as ImageJ,10 are able to
perform the kind of particle identification and counting
required for calculating NP aggregate sizes, these software are
generally not amenable to calculating other properties specific
to NP assemblies. In particular, NPs are known to assemble
into complex, higher-order structures such as strings, fractal
trees, sheets, and percolating networks that require more
elaborate metrics for characterizing their shape, self-similarity,
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and topology. While some studies have analyzed the fractal
dimension8,11 and shape metrics12,13 of NP aggregates through
image analysis, the related algorithms were not made publicly
available as part of a software package, and, in many cases, the
procedures were not automated. Thus, to the best of our
knowledge, there does not exist at present a public-domain
image analysis tool specifically tailored towards NP assembly.

Here we develop an automated image analysis tool capable
of extracting in a high throughput manner useful data on NP
assembly from images representing static snapshots of the
material sample taken during the assembly process. Our Par-
ticle Image Characterization Tool (PICT) is coded in MATLAB
R2012b and is freely available at the MATLAB File Exchange
server.14 PICT allows users to carry out various statistical ana-
lyses regarding the size, shape, and morphology of NP clusters
for a given assembly time interval. It implements a novel algor-
ithm to account for the variability in the NP building block
and for biases in cluster sampling. To demonstrate the power
of such a tool in analyzing NP assembly, we apply PICT to a
series of assembly experiments that look at the evolution of
plasmonic NP-polymer composites composed of metal NPs
with different sizes and shapes. Previously, these NPs have
been observed to assemble into structures ranging from inter-
connected NP networks to one-dimensional NP strings to NP
clusters. By analyzing scanning electron microscope (SEM)
images captured during the assembly process, we demonstrate
how PICT can be used to characterize NP assembly
morphologies and to determine the underlying assembly
mechanisms.

2. Software development
2.1. Overview

The automated image analysis software developed here is
coded in MATLAB R2012b and takes advantage of several func-
tions present in MATLAB’s Image Analysis Toolbox, in addition
to our own algorithms. These are described or noted in the fol-
lowing sections wherever appropriate. All MATLAB functions,
both existing and those developed here, are indicated in type-
writer font. The software is designed with extendability in
mind, and thus we attempted to maintain a modular structure
throughout. The overall structure is summarized in Fig. 1. The
software is split into five MATLAB files, each of which per-
forms specific tasks:

• PICT_import_images imports and preprocesses the SEM
images, preparing them for further analysis.

• PICT_calibrate lets the user calibrate our particle detection
algorithm via a graphical user interface.

• PICT_analyze_images identifies particles and clusters,
based on the calibrated settings, and measures cluster
properties.

• PICT_get_stats combines data from all images and calcu-
lates bias-corrected size distributions and mean values for par-
ticle- and cluster-based properties along with bootstrapped
error bounds for all calculated properties.

• PICT_export_results contains routines to create and
save a variety of images and figures for visualization of the
results.

In each stage, the software organizes data into suitably
named nested data structures that are saved to .mat files in
the specified output directory and that are loaded by
subsequent stages as needed. This ensures that all data can be
loaded into MATLAB and accessed directly by the user at any
time and should enable easy integration with external
functions.

The software is straightforward to use. The user collects all
images taken during an experiment into a single directory. The
images need to be named according to a simple convention,
which encodes essential information used by the software. The
user then sets a few parameters, specifies the input and output
path, and runs the five functions in turn. Further human inter-
action is required only during the calibration step. We have
prepared a detailed user’s guide, included with the software
distribution as a PDF file, describing how to install and use
the tool. This guide also includes the file-naming convention
and complete documentation of all parameters, data struc-
tures, and exportable figures related to our software.

Below we describe how the software preprocesses the
images, identifies individual NPs and their clusters, accumu-
lates weights to correct for biases in cluster sampling and for
polydispersity in NP sizes, and calculates various cluster
properties.

Fig. 1 Flowchart summarizing our image analysis algorithm. Blue boxes
contain some of the cluster properties and statistics calculated by the
program. Red boxes contain some of the more general processes
implemented.
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2.2. Preprocessing of images

The steps involved in the preprocessing of SEM images are
summarized in Fig. 2. In the first step, the software imports
the raw grayscale images (Fig. 2a) and the image data is
extracted and stored. SEM images typically have a black
bar along the bottom that contains metadata in white
(Fig. 2b). A high-threshold binary transform (im2bw) followed
by morphological opening (imopen) with a rectangular struc-
turing element (strel) removes all features from the image
except for the rectangular scale bar (Fig. 2c and d). By measur-
ing the length of the scale bar in pixels (the length in real
units is encoded in the image filename), the precise magnifi-
cation of the image is obtained. The program later uses the
magnification of each image to convert all pixel-based
measurements, such as cluster areas and lengths, into
real units.

The original image is then cropped to the field of view
(Fig. 2e). The user may specify the height of the metadata bar,
in which case those rows of the image are simply removed. If
the user does not provide this information, the program ident-
ifies the field of view itself by searching for the topmost row of
the image that consists entirely of black pixels. The cropped
image is then converted to binary (Fig. 2f); the threshold for
this final binary conversion is calculated using MATLAB’s gray-
thresh function. Users with some programming experience
should be able to modify the code to accommodate images
from SEMs that store metadata in a different format or
location.

The fraction of pixels that are part of the foreground in the
binary image gives the total area fraction Φ of the NPs. Note
that Φ is related to the total projection area of all particles,
independent of whether they are arranged in clusters or not. Φ
may vary slightly from one image to the next, but its average
value should remain approximately constant as a function of
time for a given experiment. Large fluctuations or systematic
trends in Φ(t ), where t is the time, may indicate inadequate or
biased imaging of the sample.

2.3. Identification of particles and clusters

The procedure used to identify particles and clusters is illus-
trated in Fig. 3. Throughout this paper, we use the term “par-
ticle” to refer to the individual primary NPs that assemble to
form larger structures and the term “cluster” is used to refer to
an assembled structure consisting of one or more NPs. The
software identifies all “objects” (continuous foreground
regions) in the binary image by image segmentation (bwconn-
comp). All objects that are touching a border are removed
(imclearborder), and the remaining objects are characterized
using regionprops.

Single particles are identified on the basis of three pro-
perties of the objects: area, solidity, and eccentricity. The area
of an object is calculated as the number of foreground pixels
occupying it, appropriately converted to real units. The solidity
of an object is calculated as the ratio of its area to the area of
the smallest convex polygon (convex hull) completely enclosing
that object. Finally, its eccentricity is calculated as the ratio of
the distance between the foci of an ellipse that has the same
normalized second central moments as the object and the
major axis length of the ellipse. Since NPs are usually convex
polyhedra, the solidity for a single particle will typically be
greater than for a dimer, trimer, or larger aggregate. Eccentri-
city, on the other hand, varies widely with NP species—low for
spheres and cubes; high for rods. The acceptable range for
each property is specified by the user during calibration. As an
example, property ranges used in the analysis of images from
three of our experiments are given in Table 1. Finally, particle
data from all images is combined to calculate distribution
functions for particle areas and for various shape properties.
Common measures such as the effective particle diameter and
the polydispersity index are either computed and saved or are
readily obtainable (in the case of measures that PICT does not
explicitly calculate) from these distribution functions. For a
detailed list of all computed quantities, along with their
precise definitions, we refer readers to the documentation
included with PICT. The particle identification method
implemented in our program is similar to the one used in the
Analyze Particles tool in the popular ImageJ software.10

To identify clusters, we first note that particles within a
cluster may sometimes be separated from one another by
small gaps. The whole collection of particles should still be
properly identified as a single cluster, rather than as two or
more smaller chains, as would occur if one naively found con-
nected components in the original binary image (as in
Fig. 3b). To achieve this, we implement a procedure for

Fig. 2 Preprocessing of images. Images show actual data from program
execution. (a) An original unaltered SEM image. The filename listed
above contains formatted information about the particle type, the
experiment time in minutes, the image number for that time point, and
scale bar length in microns. (b–d) Procedure for isolating and measuring
the scale bar. (e) Cropping of the image to the field-of-view and (f ) con-
version to a binary image. The region within the red box is used later in
Fig. 3 to illustrate identification of particles and clusters.
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“almost-connected-component labelling” described by
Eddins.15 Starting again from the binary image, the software
performs a morphological “closing” (imclose) with a small
structuring element. This joins any particles that are not quite
touching, yet are close enough to be considered part of a
cluster. The user may either specify the gap below which par-
ticles are joined in this manner, or the software will attempt to
determine it automatically based on measured particle sizes.
Next, each connected foreground region is identified (bwconn-
comp) and labeled (labelmatrix), and regions that extend
beyond the field of view are removed. This removal introduces
a bias, since larger clusters are more likely to extend beyond
the edges of the image than are smaller clusters; this bias is
corrected by attaching weights to each observed cluster, as
explained in the next section. Finally, a logical AND operation
between the “dilated image” and the original binary image
recovers any fine details of the cluster shape.

2.4. Unbiased feature measurement

Objects that appear to extend beyond the edges of an image
cannot be measured because their size and shape outside the
image area is unknown. If only objects that are fully contained
within the image are considered, however, the proportion of
large and small objects will be inaccurately computed, since it

is more likely for larger objects to touch an edge. This bias
may be compensated for by attaching size-dependent weights
to each object that is measured.16

To estimate these weights, we assume that for each object
measured in the image, a large number of identical objects
exist in the sample, with equal fractions oriented in any given
direction. Imagine that we randomly pick a field of view that
contains the centroid of one of these objects. If the centroid is
located far enough from the edges of the image, the entire
object will fit within the field of view and will be measurable.
The conditional probability of this happening is simply the
area of the region where the centroid can be located so that
the object is fully contained, relative to the total area of the
image:

P ¼ Wx � Fxð Þ Wy � Fy
� �

WxWy
ð1Þ

where Wx and Wy are the dimensions of the image in the x and
y directions, and Fx and Fy are the maximum dimensions of
the object in those directions.16

If ni objects of type i exist per unit area of the sample, we
would expect to fully observe only niPi of them per unit area
that we image. Therefore, we attach a weight of wi = 1/Pi to
each measured object. In principle, this recovers an unbiased
estimate of the true sample statistics. The objects are oriented
at random, however, so eqn (1) must first be averaged over all
possible orientations θ. The bias-correction weights are then
given by

wi ¼ 1
hPiθiθ ¼

WxWy

Wx � Fθð Þ Wy � Fθþ π
2

� �D E
θ[ 0;π½ Þ

ð2Þ

where Fθ is the extent of the object along the θ-direction, angle
brackets denote averaging, and only angles smaller than

Fig. 3 Schematic for identification of particles and clusters. Images show actual data from program execution. (a) Close-up of the lower-left corner
of the SEM image shown in Fig. 2; the precise region is marked in red in Fig. 2f. (b–d) Steps in the identification of particles. As this SEM image was
taken late in the assembly process, only a few particles were identified. Images taken at earlier times naturally yield many more particles. (e–h) Steps
in the identification of clusters.

Table 1 Property ranges used in identification of particles

Species Area (nm2) Solidity Eccentricity

Cubes 2000–12 000 0.8–1.0 0–0.7
Spheresa 200–2000 0.85–1.0 0–0.7
Rods 200–1200 0.8–1.0 0.9–1.0

a∼30 nm diameter in 28k PS matrix (see Methods).
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π radians need to be considered in the average because Fθ+π =
Fθ. When calculating statistics, the program assigns each
measured cluster a weight according to eqn (2). The precise
formula that we used for computing wi in the software and its
derivation are provided in the ESI.†

2.5. Calculation of cluster size distribution

The cluster size distribution Ns(t ), the number of s-particle
clusters observed at time t, is a fundamental quantity in all
assembly experiments. The details of this distribution can
often reveal a great deal about the underlying assembly
process. Size distributions at different time points or from
different experiments can only be meaningfully compared with
one another after they have been normalized. Our software
computes the relative size distribution

νs tð Þ ¼ Ns tð ÞP
s
sNsðtÞ ð3Þ

Theoretical and simulation results17,18 frequently employ
the number concentration ns(t ), the number of clusters of size
s per unit area. This is related to the quantity defined above
via ns(t ) = νs(t )Φ(t )/ā, where Φ(t ) is the total occupied area frac-
tion and ā is the mean particle area.

The cluster size distribution may also be characterized via
its moments. In particular, the number-average cluster size

S1ðtÞ ¼
P
s
sNsðtÞP

s
NsðtÞ ð4Þ

and “mass-average” cluster size

S2ðtÞ ¼
P
s
s2NsðtÞP

s
sNsðtÞ ð5Þ

are simple measures of the overall assembly rate, and are both
widely used in the literature.19 The ratio between S2(t ) and
S1(t ) provides concise qualitative information about the shape
of the distribution, and thereby about the assembly process.20

Note that the interpretation of S2(t ) as the mass-average cluster
size is rigorously valid only if we neglect NP polydispersity;
otherwise S2(t ) may be thought of as a particular quantity,
defined in eqn (5), that characterizes the cluster size
distribution.

If a human were tasked with finding Ns(t ), they might
simply count by eye the number of particles in each cluster
and tally the results. This procedure of “direct counting” is
difficult to automate, as it requires the software to differentiate
features (particles within clusters) that are very closely spaced
and whose boundaries are not crisp. In the interest of simpli-
city and robustness, we calculate cluster sizes indirectly from
area measurements. Specifically, we obtain the best possible
estimate of Ns(t ) from the measured area Ak of cluster k and
measured probability density p(a) of single-particle areas. Both
types of data are readily obtained by counting the number of
pixels in each identified cluster or single particle and convert-

ing the measured pixels to square nanometers using the image
scale bar.

In one approach, the size of a given cluster may be esti-
mated as

sk ¼ Ak
ā

ð6Þ

where ā =
Ð
ap(a)da is the mean single-particle area. To obtain

Ns(t ), one could round each of these sizes to the nearest
integer and accumulate a histogram. While intuitively appeal-
ing, this method is not theoretically sound. It entirely ignores
the polydispersity of the particles—if cluster k happens to
contain many particles that are smaller or larger than average,
eqn (6) would under- or over-predict sk—and the rounding
further harms the statistical reliability of the result.

A much better approach is to apply Bayesian inference.21

Consider the conditional probability P(s|A) that a cluster with
measured area A actually contains s particles. Using Bayes’
theorem and the law of total probability,

PðsjAÞ ¼ PðAjsÞP sð Þ
P Að Þ ¼ PðAjsÞP sð ÞP

s′
PðAjs′ÞP s′ð Þ ð7Þ

where P(A|s) ≡ p(A|s)dA is the probability that an s-particle
cluster will have an area infinitesimally different from A.
Before we measure the area of a cluster, we have no infor-
mation about how many particles it contains. It is therefore
appropriate to use a uniform prior, P(s) = P(s′). Consequently,
these factors cancel, and eqn (7) simplifies to

PðsjAÞ ¼ pðAjsÞP
s′
pðAjs′Þ ð8Þ

The calculation of p(A|s) is straightforward. Empirically, we
find that the distribution of single-particle areas is approxi-
mately Gaussian with mean ā and variance σa

2 (see ESI†).
However, if Xj � N μ; σ2ð Þ are n independent, identically dis-

tributed Gaussian random variables, then their sum Z ¼ Pn
j¼1

Xj

is also normally distributed: Z � N nμ; nσ2ð Þ. Applying this
result to our scenario, we find that

pðAjsÞ ¼ 1ffiffiffiffiffiffiffi
2πs

p
σa

exp � A� sāð Þ2
2sσa2

� �
ð9Þ

In principle, eqn (8) together with eqn (9) allow us to con-
struct the best possible estimate of the true cluster size distri-
bution Ns(t ), given our area measurements. The overall
algorithm may be summarized as follows:

• Identify all single particles and compute ā and σa
2.

• For each distinct cluster j found,
1. Measure its area Aj.
2. Calculate the bias-correcting weighting factor wj, as

described previously.
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3. Update the size distribution according to

NsðtjÞ ¼ NsðtjÞ þ pðAjjsÞP
s′
pðAjjs′Þwj

with p(Aj|s) and p(Aj|s′) given by eqn (9).
• Normalize Ns(t ) according to eqn (3) to obtain νs(t ).
Our software implements the above algorithm with slight

modifications to improve code performance. Fig. 4 compares
the cluster size distribution obtained without bias correction
or Bayesian estimation (Fig. 4a) against the corresponding dis-
tributions obtained with bias correction (Fig. 4b) and with
both bias correction and Bayesian estimation (Fig. 4c). The
above distributions were all obtained at one representative
time point during the assembly of 80 nm Ag nanocubes (see
Methods).

It is sometimes the case that the size distribution of
primary NPs in an experiment is better described by a log-
normal distribution (or some other distribution) than by a
Gaussian. Our Bayesian algorithm may be generalized to
handle an arbitrary probability distribution p(a) of single-
particle areas; one simply needs to replace eqn (9) for p(A|s) by

the appropriate distribution for A ¼ Ps
j¼1

aj, where the aj are

independent and identically distributed according to p(a). This
p(A|s) may be computed by standard methods described in
books on probability theory or statistics.

2.6. Calculation of cluster dimensions and anisotropy

Our software calculates the eigenvalues (principal moments)
R1

2 ≥ R2
2 of the gyration tensor for each cluster (see Fig. 5b) by

using MATLAB’s regionprops function. The eigenvalues are
then used to compute the radius of gyration of the clusters,
which characterizes their spatial extent, and various other
useful properties, such as aspect ratio, anisotropy ratio,
elongation, and fractional anisotropy, which all characterize
the anisotropy of clusters in different ways:

1. Radius of gyration

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ R2

2

q
ð10Þ

2. Aspect ratio

AR ¼ R1

R2
ð11Þ

3. Anisotropy ratios, as defined by Botet and Jullien22

A1 ¼ hR1
2i

hR2
2i and A1′ ¼ hR1

2i
hR2

2i ð12Þ

Here, angle brackets denote averages over a set of clus-
ters. Note that A′1 is the mean square aspect ratio.

4. Elongation, also known as Relative Anisotropy23

ε ¼ R1
2 � R2

2

R1
2 þ R2

2 ð13Þ

5. Fractional Anisotropy23

κ ¼ R1
2 � R2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

4 þ R2
4

p ð14Þ

2.7. Calculation of cluster backbone length and end-to-end
distance

Our results show that NPs tend to assemble into fractal chains
resembling branched polymers.3 By analogy with branched

Fig. 4 Comparison of normalized size distributions obtained by
different methods. (a) Simple accumulation of cluster sizes computed
with eqn (6). (b) Same, except that each cluster is weighted according to
eqn (2) when constructing the histogram. (c) Accumulation by Bayesian
inference (also bias-corrected). Notice that bias-correction decreases
the relative count of smaller particles. The Bayesian distribution is visibly
smoother due to elimination of statistical artifacts present in the other
methods.

Fig. 5 Representative NP cluster depicting: (a) backbone path (red) and
end-to-end distance vector (blue), and (b) fitted ellipse with major and
minor axes (green). The major and minor radii have length 2R1 and 2R2

respectively.
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polymers, we can treat such clusters as having a central back-
bone of length L from which other shorter chains branch off.
The Euclidean distance between the two ends of this backbone
define the end-to-end distance Lee.

A connected region can be viewed as a graph where each
foreground pixel is a “vertex”, and any vertices corresponding
to adjacent pixels are connected by an “edge”. The “geodesic
distance” between two vertices is the length of the shortest
path between them (the minimum number of edges needed to
get from one to the other). In this context, the backbone
length L is called the “graph diameter”, and it is defined as
the maximum over the set of all pairwise geodesic distances.
In practice, however, computing the maximum over the set of
shortest paths is a very time-consuming process, especially for
large clusters. We abandon rigor in favor of speed in this case,
and employ the following algorithm:

1. Identify all pixels (vertices) {v} on the boundary of a
cluster.

2. Pick one of these, v0, at random.
3. Find the vertex v1 that is furthest from v0 (in the geodesic

sense).
4. Find the vertex v2 that is furthest from v1 (in the geodesic

sense).
5. Assume that v1 and v2 are the “peripheral vertices” – the

geodesic between them is the backbone and the Eucli-
dean distance between them is the end-to-end distance
Lee (see Fig. 5a).

In principle, the algorithm presented above can fail for
certain pathological graphs and choices of v0. However, the
chances of encountering such graphs in the binary images of
experimentally observed fractal aggregates is negligible. We
refer interested readers to books on graph theory (in particu-
lar, on algorithms for computing the graph diameter) for more
details.

2.8. Calculation of cluster self-similarity dimensions

We find that NP clusters have structures that are self-similar
over a range of length-scales.24 The nature of this self-simi-
larity can be most naturally described in terms of various
fractal or scaling dimensions {D}.25 The values of {D} can give
insight into the mechanisms by which the clusters assemble.
Indeed, many models of colloidal aggregation have been
studied over the years, and different models often yield aggre-
gates with characteristic self-similarity dimensions.26

2.8.1. Calculation for a family of clusters. We can calculate
the self-similarity dimensions of a self-similar object in several
ways.24,27 One way is to determine how the object’s mass
scales with some linear dimension associated with the object
(its radius of gyration, longest axis, etc.); if l denotes the linear
measure and m the mass, we should find that

m � lD ð15Þ
To use eqn (15), we must either track one self-similar object as
it grows or shrinks, or else study a family of similar but differ-
ently-sized objects to extract the scaling exponent. The former

method is only applicable if the growth process can be fol-
lowed in real time. Our image analysis software therefore
implements the second method: self-similarity dimensions are
estimated by regression on large sets of cluster data.

The software computes D as the slope of a straight-line fit
to log(s) versus log(l) data, where s is the estimated size of a
cluster (as defined in eqn (6)). This method was found, based
on an analysis of the distribution of regression residuals,28 to
be superior to fitting a power-law directly to s versus l (see ESI†
for more details). A lower cutoff size is enforced for clusters
included in the regression, to ensure that polydispersity in
individual particle sizes does not contaminate the results.
Each distinct length scale l yields a corresponding exponent D.
Two particularly important examples are the radius of gyration
Rg, which yields a fractal dimension that we denote as D(R)

f :

s � Rg
D Rð Þ
f ð16Þ

and the graph diameter or backbone length L, which yields the
so-called “chemical” (or “spreading”) dimension dL:

27

s � LdL ð17Þ

A plot depicting the calculation of D(R)
f is shown in Fig. 6a.

Other computed dimensions are described in the documen-
tation included with our software.

2.8.2. Calculation for individual clusters. Another method
for computing the fractal dimension of an object involves
calculating its radial cumulative distribution function C(r).24

Essentially, C(r) is the fraction of space occupied by the object
within a circle of radius r centered at any reference point in
the object. For a fractal, this function should decay as

CðrÞ � r D Cð Þ
f �dð Þ ð18Þ

Fig. 6 (a) Log–log plot of cluster size s versus normalized radius of
gyration Rg/r1. Data points represent all clusters observed during the
experiment labelled E1, colored by time of observation (see Fig. 7a–d). r1
is the mean single-particle radius of gyration. The best-fit line is shown
and the fractal dimension D(R)

f given by the slope of this line is listed;
error bounds indicate 95% confidence interval for the slope. (b) Plot
showing the decay of C(r) with distance r for the NP cluster shown in
Fig. 5, and the computed fractal dimension D(C)

f .
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where d is the dimension of the space in which the fractal is
embedded. The r-domain over which this scaling relation
holds is exactly the range of length-scales over which the
object is self-similar. Note that we explicitly distinguish the
fractal dimension D(C)

f entering into the above relation from
the dimension D(R)

f described previously, because the values
are in general different for finite objects or for objects whose
structure is only approximately fractal, such as NP clusters.

In a binary (thresholded) digital image of a two-dimen-
sional NP, each cluster is a set of pixels. These pixels are
points on a lattice and their coordinates are pairs (xi,yi) of inte-
gers. Let f (r) be the number of arbitrary pairs (x,y) of integers
for which x2 + y2 does not exceed r. A circle of radius r drawn
around any reference pixel (xk,yk) will contain f (r) lattice
points, but only Nk(r) of these will be occupied by the aggre-
gate. The radial cumulative distribution function C(r) is then
given by

CðrÞ ¼ hNkðrÞik
f ðrÞ ð19Þ

where we have averaged over reference points. The average
must be defined with care; if the aggregate is finite, all refer-
ence points are not equivalent. That is, a given point can only
contribute to C(r) over the interval 0 ≤ r < Rk, where Rk is the
radius of the largest circle that can be drawn around (xk,yk)
without extending beyond the edges of the finite aggregate. To
determine this upper limit explicitly, we first calculate the dis-
tance of each point in the aggregate from its centre of mass:

rck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xih ið Þ2þ xk � yih ið Þ2

q
ð20Þ

A circle of radius {rck} drawn around (〈xi〉,〈yi〉) would just
contain the whole aggregate, and we use this circle as our
boundary. Therefore, we have

Rk ¼ maxfrckg � rck ð21Þ
With this restriction on the domain of r to which each refer-

ence point k can contribute, we construct C(r) by applying eqn
(19). Then, we can extract the fractal dimension of the aggre-
gate from a plot of log(C) versus log(r), in accordance with eqn
(18). Empirically, we find that such a plot is linear for d1 < r <
Rg, where d1 ¼

ffiffiffiffiffiffiffiffiffiffi
4a=π

pD E
is the mean “equivalent diameter” of

a single nanoparticle (a is the single-particle area) and Rg is
the radius of gyration of the aggregate. A representative plot is
shown in Fig. 6b.

2.9. Statistics and error analysis

The entire set of statistics calculated by our software, including
those mentioned above, are described in the documentation
distributed with our code. The software also computes and
returns standard errors and confidence intervals for most
calculated quantities. These are obtained by the nonparametric
bootstrap method,29 which allows for easy and reliable uncer-
tainty estimation for statistics, such as weighted means and
ratios, for which simple analytical error expressions are not
available.30

2.10. Software validation

We have carried out various tests to validate the three main
components of our software: the algorithms for detecting
individual particles and their clusters; the calculation of
various structural properties of the particle clusters; and the
Bayesian algorithm for the estimation of cluster size distri-
butions. A detailed discussion of all three forms of validation
is provided in the ESI.†

3. Results and discussion

To demonstrate the applicability of our image analysis tool, we
have used it to investigate similarities and differences in the
assembly of NPs carried out with particles of different sizes
and shapes within polymer films of different molecular
weights. Specifically, we analyzed five different experiments
involving the assembly of: silver nanocubes of edge length
80 nm in polystyrene (PS) thin films of molecular weight
(Mw) ≈ 11 000 (11k) (we refer to this experiment as E1); gold
nanorods of length 40 nm and diameter 10 nm (E2) and Gold
nanospheres of diameter 13 nm in PS films of the same
Mw (E3); and silver nanospheres of diameter 30 nm in PS films
with shorter chains of Mw ≈ 3000 (E4) and with longer chains
of Mw ≈ 28 000 (E5). The NPs were synthesized using wet
chemical methods to yield a colloidal dispersion of uniformly
sized and shaped particles surface-functionalized with poly-
(vinyl pyrrolidone) (PVP) chains of Mw ≈ 55 000. The NP dis-
persion was spread onto an air-water interface to produce a
monolayer of uniformly distributed NPs, which was then trans-
ferred onto the surface of a thin PS film. The NPs were
embedded into the underlying polymer through solvent
annealing, whereupon the NPs sank into the film and began
to diffuse within it and assemble into higher-order NP clus-
ters. In each experiment, we captured on the order of 100 SEM
images, spread across all time points; Fig. 7a shows smaller
sections of a representative SEM image captured from each of
the five experiments. Details on the synthesis, assembly, and
imaging of NPs are provided in Methods.

Fig. 7b–g summarizes the results from our analyses of the
above five NP assembly experiments. The total NP area fraction
Φ calculated for each SEM image that was analyzed is plotted
in Fig. 7b. As discussed earlier, Φ is calculated as the fraction
of foreground pixels in a thresholded image. On the whole, the
mean area fraction remains largely constant as a function of
time for each experiment, as it should. Variations in Φ on the
order of 1–2% between images may be explained as the result
of local inhomogeneities induced by the stochastic motion of
the particles and clusters. The few outliers are likely the result
of slightly nonuniform sample preparation. Also, as men-
tioned in Methods, the data for different time points must
come from different samples due to the requirement of the
polymer samples to be frozen during imaging. Note that the
area fractions in our experiments are high enough that shape
effects are significant, and mean-field theories, such as the
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Fig. 7 Results from automated image analysis of data from five sets of experiments organized in columns. (a) Representative sections of analyzed
SEM images. Scalebars are 250 nm. (b) Scatterplot of particle number density in each analyzed image as function of time. The points are sized rela-
tive to image area. (c) Mean cluster size versus time in minutes. Axes scales are identical to aid visual comparison of the growth rates. (d) Normalized
cluster size distributions. (e) Scatterplot of fractal dimension versus aspect ratio. Points correspond to individual clusters, and are sized/colored rela-
tive to cluster size. (f ) Mean fractal dimension D(C)

f versus cluster size. Overall values obtained for D(R)
f and chemical dimension dL are also plotted.

(g) Anisotropy ratio A1 and mean aspect ratio AR versus cluster size.
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classical Smoluchowski model of particle aggregation,17 may
not apply.

The growth rates of the number-average mean cluster size
S1(t ) with time are plotted in Fig. 7c. In all experiments,
chloroform vapor annealing of the polymer-NP films begins at
t = 0, but we observe a significant dormant period preceding
the onset of aggregation. Prior work has shown that the well-
dispersed NPs, which are initially deposited on top of the
polymer film, slowly sink into the film as it becomes mobile,
until they are fully embedded by the polymer.3 It is unclear
why aggregation does not occur simultaneously during this
process. It is possible that the grafted chains on the NP
surface prevent immediate aggregation, or that the lateral
diffusion coefficient of the particles slowly increases from zero
as the polymer becomes mobile over larger length scales. The
delayed start times for the larger particles (E1) and higher Mw

polymer matrix (E5), are consistent with this theory, but the
late start-time for the smaller nanorods (E2) is unusual.

The exponential shape of the growth curves is suggestive of
reaction-limited aggregation kinetics,31 but the uncertainty in
start times makes it difficult to extract exponents, or to quanti-
tatively compare rates between experiments. It is possible that
diffusion-limited kinetics, conspiring with a time-dependent
diffusion coefficient, could also lead to growth scalings of this
kind. The overall growth rates, once aggregation begins, are
comparable across experiments E1, E4 and E5. Nanorods (E2)
and small 13-nm nanospheres (E3) seem to exhibit faster kine-
tics, but in the latter case, limited data makes it difficult to
conclude this with certainty. Faster growth in these cases may
be explained on the basis of faster diffusion of smaller par-
ticles through the polymer matrix, resulting in higher collision
rates, and hence faster growth.

Cluster size distributions (Fig. 7d) are strikingly similar
across all five experiments, exhibiting a characteristic mono-
tonic decay of νs(t ) with s at all times. The absence of a peak in
the distributions suggests that the dominant mode of cluster
growth at later times is via cluster-cluster, rather than particle-
cluster collisions. If the latter were predominant, then we
should expect to observe a depletion of single particles, which
we do not. The similarity in shape of the distributions is some-
what remarkable, given that the aggregating particles differ
widely in shape and size as well as in the properties of the sur-
rounding matrix. Our observation of cluster-cluster collisions
is also consistent with the step-growth polymerization mech-
anism reported by Liu et al.32 for polymer-functionalized gold
nanorods. It should be noted that at high enough NP den-
sities, large clusters collide to form nearly interconnected net-
works, which can make cluster sizes difficult to determine
accurately.

The scatterplots in Fig. 7e show shape data (fractal dimen-
sion D(C)

f versus aspect ratio AR) for all NP clusters larger than
s = 20 observed in each experiment. The points are sized and
colored according to the size of the corresponding cluster. The
overall shape of the cloud of points is similar for all experi-
ments and shows that there is large variation in shape
between individual clusters. Low fractal dimensions and high

aspect ratios suggest extended chain-like morphologies, while
the opposite combination of properties suggests compact,
globular shapes. Low Df and AR together imply loose dendritic
structures. In all five experiments, small clusters can be found
that exhibit each of these morphologies; as the clusters grow
larger, they tend to converge to fractal dimensions near 1.4
and aspect ratios near 2–3.

As noted earlier, self-similarity dimensions provide a
concise and powerful characterization of the shape of aggregat-
ing clusters. The fractal dimension D(R)

f , and the chemical (or
spreading) dimension dL calculated in each experiment are
marked respectively as orange and green horizontal lines in
Fig. 7f. These lines indicate the values obtained by regression
on all clusters (larger than a lower cutoff size) observed during
the respective experiments. The calculated dimensions are,
within error bars, approximately equal across experiments E1
and E3–E5, but are lower than the values predicted by both
diffusion-controlled Brownian aggregation models (Df ≈ 1.44)
and reaction-controlled models (Df ≈ 1.55).26 This lower
dimensionality likely reflects the steric interactions between
grafted polymer, which have been proposed to favor linear
rather than branched configurations in clusters composed of
polymer-grafted nanoparticles.33 It is interesting that both
dimensions are significantly higher for nanorods (E2) than for
the other particle species studied. This somewhat counterin-
tuitive result may be due to rods starting to align side-by-side
in larger aggregates.

Less data is available in the literature for the chemical
dimension dL than for Df. This dimension appears to have
been studied mostly in the context of percolation clusters, a
particular type of model that is not really applicable to our
experiments. Nevertheless, we find that the ratio dmin = Df/dL,
computed from our results, matches the reported value for per-
colation clusters in two dimensions (dmin = 1.13).34 Further
work is needed to determine whether there is a physical expla-
nation behind this result or if it is merely a coincidence. The
mean D(C)

f values as functions of cluster size are also plotted
(in blue) in Fig. 7f. These appear to slowly converge to the
corresponding D(R)

f values at large cluster sizes, as expected.
Fig. 7g shows anisotropy ratios A1 and mean aspect ratios

AR as functions of cluster size. These values start off large for
nanorods (E2), and then equilibrate to smaller values as
cluster size increases, while for the other particle species the
opposite trend is observed. This merely reflects the inherent
anisotropy of individual nanorods, as compared with the rela-
tive isotropy of nanocubes and nanospheres. The high mean
anisotropy of the clusters in all five experiments rules out
certain models, such as Witten and Sander’s particle-cluster
aggregation (PCA), which yield aggregates that are isotropic
and dendritic on average.35 However, the results match those
for the cluster-cluster aggregation (CCA) model36,37 extremely
well. The anisotropy of clusters generated in different varieties
of CCA was studied in detail by Botet and Julien,22 who
obtained A1 = 5.7 ± 0.2 in the diffusion-controlled version and
A1 = 4.7 ± 0.2 in the reaction-limited case.22 Our results are cer-
tainly in this range, and lean towards the former value.
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However, it is also possible that reaction-limited kinetics,
coupled with restructuring due to repulsive steric interactions
between grafted polymer, could produce clusters with the
observed anisotropies. Further studies are needed to decide
the issue.

The results presented and discussed above represent only a
subset of the data and statistics that our tool calculates. Other
results may be useful for exploring specific questions about
nanoparticle aggregation, and in such cases, similar plots can
be easily generated. We have included routines for generating
several of these plots in the PICT_export_results function of our
software package. It should also be noted that our experiments
were planned and performed before the image analysis tool
was conceived. Thus, there is significant room for further
improving the reliability of the data presented in Fig. 7 and of
the conclusions derived from this data. For instance, in each
of our experiments, we captured roughly one hundred SEM
images, spread across all time points. This number is
sufficient for analysis, but more images would yield even
better statistics, without any significant increase in the time
needed to process the additional data. In principle, the ideal
method of capturing images would be to pick a large number
of non-overlapping image locations at random, and have the
microscope automatically image the sample at those coordi-
nates. Such a method minimizes otherwise unavoidable biases
on the part of the researcher searching for “good” spots
to image.

4. Conclusions

We have introduced a quantitative image analysis software for
studying the assembly of NPs. The software inputs a set of
experimental electron microscopy images captured during
assembly and outputs various structural properties of the NPs
and their clusters as a function of time. In particular, the soft-
ware computes both averages and distributions in various
metrics characterizing the size, morphology, anisotropy, and
self-similarity of NP assemblies along with error bounds in
each computed property. To demonstrate its applicability, we
have used the software to analyze particle assembly carried out
with NPs of different shapes and sizes in polymer films of
different molecular weights. Our results illustrate how the soft-
ware can be used to not only characterize NP assembly but to
also dissect the role of different assembly parameters and elu-
cidate underlying mechanisms of NP assembly.

We envision that our image analysis software will become
an invaluable tool for researchers studying NP assembly in
various media; the software is already almost fully automated
and user friendly. By minimizing the time and effort required
for data analysis, our tool should enable researchers to more
rapidly study many interesting problems in this field and to
also collect larger, more statistically reliable datasets. In fact,
other members of our group are already using the tool to
explore some of these questions. Future applications that we
plan to pursue include a systematic analysis of the effect of

various system parameters on the growth and morphology of
NP aggregates: parameters such as particle size, number
density, and lengths of the grafted and matrix polymer.
We also intend to perform a more detailed comparison of our
experimental results with simulations and theoretical models
of aggregation.

In our demonstration, we used PICT to analyze SEM images
of noble metal NPs; however, PICT is not limited to character-
ization of only these images/materials. PICT can be used to
analyze any image [e.g., SEM, transmission electron micro-
scope (TEM), and optical] as long as the imaging contrast can
be made high enough to resolve individual particles and that
the particles are reasonably uniform in size and shape.
For TEM images where NPs are supported on a mounted grid
(typically backed with amorphous carbon), PICT may encoun-
ter limitations for analyzing NPs that possess limited contrast
with the grid backing, namely small NPs (<5 nm) that are com-
posed of low electron density materials such as polymers or
oxides. In this limiting case, setting threshold contrast values
too high may lead to the incorrect recognition of parts of grid
background as small particles.

The software has room for further extension and improve-
ment. For instance, it cannot at present handle multiple NP
species in the same experiment, such as a binary mixture of
nanospheres and nanocubes. However, our software code is
written with extendability in mind, and it should be possible
to add this functionality fairly easily. We also plan to incorpor-
ate other features into the tool in the future, including kernel-
based detection of particles within clusters, correlation func-
tions for nanoparticle or cluster orientations, and additional
methods like box-counting for calculating self-similarity
dimensions. We hope that other researchers will use the tool
and actively help us to develop it by sending us their sugges-
tions, or code modifications, for us to incorporate.

5. Methods
5.1. Synthesis of polymer-grafted nanoparticles

Spherical Au NPs were synthesized according to the well-
known Turkevich method.38 The as-synthesized citrate-capped
Au nanosphere were then coated with poly(vinyl pyrrolidone)
(PVP, Mw = 55k, Sigma-Aldrich) chains in aqueous solution
under stirring at room temperature as previously
described.39,40 To remove excess polymer, the Au nanospheres
were precipitated by centrifugation (Eppendorf Centrifuge
5804) and redispersed in ethanol. This process was repeated
two times. Au nanorods were synthesized by seed-mediated
growth as previously reported.41 The as-synthesized Au nanor-
ods were then coated with PVP polymer in aqueous solution
using the same method mentioned above. The ligand
exchange process was confirmed by UV-visible absorption
spectroscopy, infrared spectroscopy, and dynamic light scatter-
ing. PVP-grafted Ag nanocubes were synthesized using a
previously reported polyol reaction.42 The as-synthesized
nanocubes were further purified by filtration and concentrated
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to the desired concentration in pure ethanol as previously
described.3

5.2. Composite film fabrication

The NP-polymer composite film was fabricated using pre-
viously described methods.3,39 Specifically, about 180–200 nm
thick polystyrene (PS, Mw range from 3k to 28k) films were
spun coated onto clean Si substrates and film thickness was
measured by atomic force microscopy (Veeco, Multimode
Nanoscope IV). PVP-coated NPs were typically precipitated in
∼100 μL ethanol before diluting with 1–2 ml CHCl3. NP disper-
sions were then added dropwise to an air-water interface until
a floating monolayer of nanoparticles was obtained. The NP
monolayer was then transferred onto supported PS thin-films
by dip-coating. The NP-PS composite was then exposed to
CHCl3 vapor in a closed vessel at room temperature according
to previous methods.33,43 For monitoring the time-dependent
evolution of assembly structures, the nanocomposite films
were enclosed in individual vessels during the vapour exposure
step and removed from the vessel after the desired time inter-
val. Assembly time is limited by degradation of the NP-
polymer composite. The metal NPs experience significant
polymer dewetting at later assembly times, which stops growth
altogether by preventing NP diffusion and pinning the NPs
against the underlying solid support (this occurs earlier in
experiments E3 and E4, as noted from the growth curves in
Fig. 7). This dewetting is primarily controlled by polymer-NP
interactions that are difficult to control uniformly across NPs
with different sizes, shapes, and compositions.

5.3. Sample characterization

NP assembly was characterized by scanning electron
microscopy (SEM) using a FEI UHR Field Emission SEM
equipped with a field emission cathode with a lateral resolu-
tion of approximately 2 nm. The acceleration voltage was
chosen between 5 and 30 kV.

List of symbols

s Cluster size (# of constituent particles)
t Experiment time
Φ(t ) Total NP area fraction in an image
wi Bias-correction weight for cluster i [eqn (2)]
Ns(t ) Cluster size distribution (# of s-particle clusters)
νs(t ) Relative cluster size distribution [eqn (3)] (# of

clusters/total # of NPs)
ns(t ) Cluster number concentration (# of s-particle

clusters/unit area)
S1(t ) Number-average mean cluster size [eqn (4)]
S2(t ) Mass-average mean cluster size [eqn (5)]
p(a) Distribution of NP (projection) areas
R1

2, R2
2 Principal moments of the gyration tensor

Rg Radius of gyration [eqn (10)]
AR Aspect ratio [eqn (11)]
A1 Anisotropy ratio [eqn (12)]

ε Elongation (relative anisotropy) [eqn (13)]
κ Fractional anisotropy [eqn (14)]
L Backbone length (graph diameter)
Lee End-to-end distance
D(R)
f Fractal scaling dimension of s with Rg [eqn (16)]

dL Scaling dimension of s with L [eqn (17)] (“chemical”
or “spreading” dimension)

D(C)
f Fractal dimension obtained from decay of cluster

radial cumulative distribution function [eqn (18)]
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