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Models for recovering the energy landscape of conformational transitions from
single-molecule pulling experiments
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ABSTRACT
Single-molecule force spectroscopy is a powerful experimental technique for probing intermolecular forces
and conformational transitions of individual molecules. This technique involves measuring the mechanical
response of a molecule subjected to a constant or time-varying force. Statistical mechanics has played a
pivotal role in interpreting forcemeasurements in terms of the underlying kinetics and energy landscape of
themolecular transition being studied. Here, we provide a didactic review of various statistical–mechanical
models used for analysing these measurements, emphasising the theoretical ideas and assumptions used
in deriving these models.
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1. Introduction

How molecules fold or unfold, bind to each other and undergo
internal conformational changes is fundamentally related to the
underlying energy landscape, defined as the potential energy
U(rN ) of the molecular system as a function of all its possible
conformations specified by the Cartesian coordinates rN ≡{
x1, y1, z1, x2, y2, z2, · · · , xN , yN , zN

}
for an N-atom system.[1]

Consider a conformational transition from one stable state,
identified by a minimum in the energy landscape and denoted
by R (as in ‘reactant’) to another stable state denoted by P (as in
‘product’) in the landscape (Figure 1(A)). Given the stochastic
nature of molecular transitions due to thermal fluctuations, the
transition may be pictured [2] as an ensemble of ‘productive’
trajectories traversing across this multi-dimensional landscape,
each originating from R and ending at P, with most of the
trajectories passing through a transition state, identified as the
saddle point in the landscape and denoted by T.

In many cases, the transition can be approximated as a com-
bination of deterministic and stochastic motion along a single
coordinate x known as the ‘reaction coordinate’ connecting the
two stable states via the transition state (Figure 1(A) and (B)).
The relevant potential along this reaction path is the free energy,
or more specifically, the potential of mean forceG(x) defined as
[3]
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G(x) = −kBT ln
{∫

· · ·
∫

δ
(
x′(rN ) − x

)

exp
[
−U(rN )/kBT

]
drN

}
(1)

to within an additive constant, where x specifies the position
along the reaction coordinate and x′(rN ) is a functiondescribing
the reaction coordinate in terms of the relevant degrees of free-
dom. The resulting 1D free-energy landscape allows character-
ization of the molecular transition in terms of three parameters
(Figure 1(B)): (1) the distance "x0 of the energy barrier at the
transition state from the reactant state, (2) the height"G0 of this
energy barrier relative to the reactant state and (3) the intrinsic
rate k0 of transition across the barrier, from reactant to product.
Because the Boltzmann factor exp

[
−U/kBT

]
in Equation (1)

is integrated over all degrees of freedom rN , G(x) naturally ac-
counts for energetic and entropic variations along x. Therefore,
if the saddle region in Figure 1(A) weremuch narrower than the
two minima, a portion of"G0 shown in Figure 1(B) would also
arise from the low entropy of the transition state, in addition to
its high energy.

A powerful approach for experimentally probing the energy
landscape ofmolecular transitions is single-molecule force spec-
troscopy (SMFS).[4] This approach, developed in the 1990s, in-
volves studying themechanical responseof individualmolecules
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Figure 1. (A) Molecular transition between two stable states across a transition state in a multi-dimensional energy landscape, illustrated using the example of a contour
plot of a 2D potential energy landscape U(x1, x2) with two independent coordinates x1 and x2. A hypothetical molecular trajectory (x1(t), x2(t)) is shown in blue and
a possible reaction coordinate is shown in red. (B) Schematic of 1D free-energy landscape obtained from a projection of the 2D potential energy landscape onto the
reaction coordinate showing parameters k0,"x0 and"G0 that characterise the molecular transition.

Figure 2. (A) Schematic showing a typical optical tweezers SMFS set-up for
imposing a time-varying force F(t) on the interrogated molecule via a movable
optical trap (figure not to scale). Schematic of the typical outputs obtained in the
(B) constant-force and (C) constant-speed pulling modes.

subjected to controlled forces through a pulling device (Figure
2(A)). The most common pulling devices include the atomic
force microscope (AFM), optical tweezers (OT) and magnetic
tweezers (MT).[5] The underlying principle behind each tech-
nique is the same: one end of the molecule or the molecular
complex is attached to a fixed support while the other end is
attached to a probe – the tip of the cantilever beam in AFM, the
dielectric bead in OT and the magnetic bead in MT – through
which the force is imposed, andmeasured. The force is imposed
by translating the mechanical element or electromagnetic field
coupled to the probe – the end of the cantilever beam in AFM,
the laser optical trap in OT and the magnetic field in MT
– causing a deflection δx in the probe from its equilibrium
position. Assuming Hookean spring behaviour of the probe,
the imposed force is then obtained via F = −Kδx, where K is
the effective spring constant of the probe. Thus, bymanipulating
the coupling agent in a time-dependent manner, a time-varying
pulling force F(t) may be imposed on the attached molecule.

SMFS experiments are operated most commonly in two
pulling modes.[4] In the ‘force-clamp’ mode, a constant
pulling force F is imposed and the molecular extension (end -
to-end distance) x(t) is monitored as a function of time t. A

sudden jump in the extension signals a rupture event, with the
corresponding time termed ‘rupture time’ tR (Figure 2(B)). By
‘rupture’, we mean sudden unfolding of a molecule or dissocia-
tionof amolecular complex throughbreakageof the intermolec-
ular bonds holding together the molecule or complex. Repeated
measurements at the same force should yield an average time
constant of rupture, which can be inverted to obtain the average
rate constant k(F) of rupture that is expected to increase rapidly
with the magnitude of the applied force. An even more popular
pullingmode is the ‘force-ramp’mode, where the pulling device
is pulled at a constant speed V , resulting in a linearly increasing
applied force approximately given by F(t) = KVt, where Ḟ ≡
KV is the so-called loading rate. Rupture is detected as a ‘rip’ in
the force-extension (F-x) plot (Figure 2(C)) and the associated
force is termed the ‘rupture force’ FR. Repeated measurements
yield a loading rate-dependent distribution p(FR; Ḟ) in rupture
forces, which can then be averaged to obtain the mean rupture
force FR(Ḟ). Two other pulling modes, the constant-position
and force-jump protocols, [4] which are less commonly em-
ployed will not be discussed here.

Statistical mechanics has played a critical role in making
sense of such rate and forcemeasurements emerging fromSMFS
experiments, specifically in recovering properties of the un-
derlying free-energy landscape. In this review, we provide a
historical account of some of the key statistical–mechanical
models developed over the years to extract these parameters
from rupture rate and force measurements. In particular, we
focus on a class of analytical models that relate rupture rates,
forces and distributions to the height "G0 of the energy bar-
rier, its location "x0, and the intrinsic rate constant k0 asso-
ciated with the free-energy landscape governing the rupture
transition. A different class of models [6,7] based on Jarzyn-
ski’s equality [8] and Crooks’ fluctuation theorem [9] involv-
ing work measurements for recovering properties of the en-
ergy landscape are not discussed. We begin by discussing the
earlier models, termed first-generation models, based on the
Bell–Zhurkov phenomenological force-rate relationship. Next,
we discuss more sophisticated models, second-generation
models, based on Kramers’ theory and functional forms of the
energy landscape. Lastly, we discuss more recent models, third-
generation models, accounting for the stiffness of the pulling
device and handles. We end this review by discussing the role
of molecular simulations in the development and validation of
suchmodels. Throughout this review, the focus is more on edu-
cating the readers on the theoretical concepts and assumptions
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Figure 3. Schematic of the free energy of separation of two bound molecules as
a function of their separation distance (adapted from Figure 6 of Bell [10]). The
application of force decreases the free energy linearly with distance.

underpinning these models and less on their implementation
and applications.

2. First-generationmodels

2.1. Bell–Zhurkov phenomenological model

One of the earliest models used in SMFS is the phenomeno-
logical model proposed by Bell in 1978 to describe the effect
of an external force on the lifetime of a receptor–ligand bond
at the interface of two cells.[10] Bell surmised that the free
energy of the bound molecules must exhibit a minimum at
their equilibrium binding location and a maximum (barrier)
between the bound and unbound states, and that work must be
done to separate the molecules (Figure 3). Therefore, when a
force was applied to separate the molecules, the energy barrier
would diminish and, for a sufficiently strong force, completely
disappear. It was further asserted that if"G0 is the height of the
energy barrier and "x0 is the distance of the minimum to the
energy barrier, then the energy barrier would completely vanish
at an applied force of F0 ≃ "G0/"x0, as shown in Figure 3, at
which point the work done F0 × "x0 equals the barrier energy
"G0.

To quantify the lifetime τ of the bond as a function of force
F, Bell considered a relationship from Zhurkov [11] describing
the lifetime of solid specimens subjected to tensile stresses:

τ = τ0 exp
[
(E0 − γ F)

kBT

]
, (2)

where τ0 denoted the reciprocal of a natural frequency of os-
cillation of atoms in solids, E0 was interpreted as an energy
barrier determining the probability of bond breakage, γ was
an empirical parameter introduced to quantify the strength of
solids, kB is the Boltzmann constant, and T the temperature.
By setting E0 = "G0, and γ ≃ "x0 so that τ = τ0 when
F = "G0/"x0, Bell proposed the following force-dependent
unbinding rate constant k(F) for a receptor–ligand bond:

k(F) = k0 exp
(
F"x0
kBT

)
, (3)

where k0 ≡ τ−1
0 exp ( − "G0/kBT) is the intrinsic unbinding

rate (at zero loads).
The above model for k(F) has been widely used to treat the

kinetics of a variety of molecular systems subjected to constant
forces. In particular, the model has been fitted to rupture rate

k(F)measurements carried out in the force-clampmode for re-
covering the intrinsic transition rate k0 as well as distance to the
activation barrier"x0.[12,13] However, as we will discuss later,
the Bell–Zhurkov model has a number of limitations, including
its inability to relate rupture rates to the energy barrier "G0.
Such limitations have been addressed by more sophisticated
models.

2.2. Survival-probability formalism for obtaining rupture
forces

As mentioned earlier, a more useful pulling mode is force-
ramp, in which the pulling device of effective stiffness K is
moved at a constant speed V , imposing a linearly increasing
load F(t) = KVt on the molecule at a constant loading rate of
Ḟ ≡ dF/dt = KV . Such a scenario was considered in 1991
by Evans and co-workers [14] in the context of agglutinin-
bonded red blood cells. Specifically, the authorswere attempting
to measure the strength of a focal bond between two smooth
membrane capsules by withdrawing one capsule from the other
and recording the force FR at the time the bond ruptured.
Instead of observing a discrete rupture force each time the
measurement was carried out at the same withdrawal rate, the
authors observed a distribution p(FR) of rupture forces. It was
rationalised that bond rupture might be a stochastic event,
where the probability of survival of a bond decreases with both
the duration of the load and its magnitude. It was only several
years later that Evans and Ritchie [15] proposed a quantitative
model for this phenomenon.

The model invokes the concept of survival probability S(t),
defined as the probability that the bond has not ruptured by time
t.[15,16] Assuming that bonds do not reformonce ruptured, the
rate of change of survival probability is assumed to follow the
first-order rate equation:

dS(t)
dt

= −k(F(t))S(t), (4)

where the rupture rate k(F) is an indirect function of time
through the time-dependency of the applied force F(t). The
above equation implies that the probability that a bond will
rupture between time t and t + dt is equal to the conditional
probability k(t)dt of an intact bond rupturing multiplied by the
probability S(t) that the bond has not ruptured earlier during
time interval from 0 to t. Integrating the above equation within
the limits S = 1 at time t ′ = 0 and S = S(t) at time t ′ = t then
yields

S(t) = exp
[
−

∫ t

0
k(t ′)dt ′

]
. (5)

Substituting the Bell–Zhurkov rate constant (Equation (3)) and
the force variation F = Ḟt into Equation (5) yields the following
analytical expression for S(t):

S(t) = exp
[
k0kBT
Ḟ"x0

{
1 − exp

(
Ḟ"x0
kBT

t
)}]

, (6)

which rightfully drops from a value of 1 at time t = 0 to 0 as
t → ∞ (see Figure 4(A)).

The survival probability S(t) can be related to the distribu-
tion p(FR) of rupture forces measured from multiple pulling
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Figure 4. Characteristics of rupture under a linearly increasing force. (A) Survival probability S(t∗) versus time for five different loading rates Ḟ∗ . (B) Survival probability
S(F∗

R ) versus rupture force F∗
R for the five loading rates specified above. (C) Rupture force distributions p∗(F∗

R) for the same five loading rates. (D) Mean rupture force FR
∗

and most-probable force F∗
R,mp plotted as a function of loading rate. All quantities are plotted in dimensionless units: t∗ ≡ k0t, Ḟ∗ ≡ Ḟ"x0/k0kBT , F∗

R ≡ FR"x0/kBT ,

p∗(F∗
R) ≡ kBTp(F∗

R)/"x0, FR
∗ ≡ FR"x0/kBT , and F∗

R,mp ≡ FR,mp"x0/kBT .

experiments at the same loading rate Ḟ given that the measured
FR can be related to the pulling time t via FR = Ḟt, i.e. S(t) ≡
S(t(FR)). By definition, the fraction of bonds that have ruptured
on average by the time t the load has risen to a value of FR is
given by

∫ FR
0 p(F ′

R)dF ′
R. Note how this fraction is 0 at the start

of pulling (t = 0) when FR = 0 and equals 1 after pulling for an
infinite timewhereuponFR → ∞. This ruptured fraction is also
by definition equal to 1 minus the probability S(t) that a bond
has survived by time t. In otherwords, 1−S(t) =

∫ FR
0 p(F ′

R)dF ′
R.

Differentiating both sides with respect to FR yields

−dS = p(FR)dFR. (7)

Differentiating further both sides with respect to time, recog-
nising that dFR/dt = Ḟ, and substituting Equation (4) yields

p(FR) = 1
Ḟ
k(FR)S(t). (8)

Substituting Equation (5) into the above equation and changing
the variable of integration from t to FR yields the following
explicit formula for obtaining p(FR):

p(FR) = k(FR)

Ḟ
exp

[
−

∫ FR

0

k(F)

Ḟ
dF

]
. (9)

An explicit expression for p(FR) corresponding to the Bell–
Zhurkov model may be obtained by substituting Equation (3)
into Equation (9):

p(FR)= k0
Ḟ

exp
[
FR"x0
kBT

]
exp

[
k0kBT
Ḟ"x0

{
1 − exp

[
FR"x0
kBT

]}]
.

(10)

The resulting p(FR), plotted in Figure 4(C), correctly predicts
the characteristic bell-like shape of rupture force histograms
observed experimentally at intermediate to large loading rates.
Equation (8) provides a simple mathematical explanation for
this shape: k(FR) is a rapidly increasing function of force (from
Equation (3)) while S(t) is a rapidly decreasing function of time
(or force) (Figure 4(A)), causing their product k(FR)S(t) ∼
p(FR) to exhibit a maximum at an intermediate force. A more
intuitive explanation is that at small forces, the bonddoes not get
enough time to rupture, leading to a small rupture probability
p(FR), whereas at large forces, only a few intact bonds remain
as most molecules have already ruptured at lower forces, also
leading to a small p(FR). The largest value of p(FR) is then
expected to occur at some intermediate force. It can further be
shown that in the limit of low forces, p(FR) rises exponentially
with FR as

lim
FR→0

p(FR) ≈ k0
Ḟ

exp
[
FR"x0
kBT

(
1 − k0kBT

Ḟ"x0

)]
, (11)

while it drops double exponentially with increasing F in the
limit of large forces:

lim
FR→∞

p(FR) ≈ k0
Ḟ

exp
[
−k0kBT

Ḟ"x0
exp

(
FR"x0
kBT

)]
. (12)

This leads to the skewness in p(FR), where the rise preceding
the p(FR) peak is more gradual than the drop after the peak.
The theoretical p(FR) also correctly predicts the characteristic
shift in p(FR) towards larger forces with increasing loading rate
Ḟ. This effect can also be intuitively explained by Equation (8):
k(F) is independent of Ḟ, but S(t) decays more slowly with
increasing Ḟ when plotted as a function of the rupture force
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(Figure 4(B)), causing the rightwards shift in p(FR) (Figure
4(C)). Note that the slower decay in S(FR) occurs because a
force FR is reached faster at larger loading rates, giving the bond
less time to undergo thermally activated rupture.

It is possible to calculate a semianalytic expression for the
mean rupture force FR =

∫ ∞
0 FRp(FR)dFR corresponding to

the p(FR) in Equation (10):

FR = kBT
"x0

exp
[
k0kBT
Ḟ"x0

]
E1

(
k0kBT
Ḟ"x0

)
, (13)

where E1(x) is the exponential integral
∫ ∞
x e−t/t dt that can be

approximated as e−x ln (1 + e−γ /x) with γ ≈ 0.577. Similarly,
the location of the peak in p(FR), known as the most probable
force FR,mp, may be evaluated analytically by setting the deriva-
tive dp(FR)/dFR|FR,mp = 0:

FR,mp = kBT
"x0

ln
(
Ḟ"x0
k0kBT

)
. (14)

These results indicate thatFR andFR,mp risenear-logarithmically
and logarithmically with increasing loading rate (Figure 4(D)),
respectively, and that both forces increase with decreasing dis-
tance to barrier "x0 and decreasing intrinsic rupture rate k0.
The above models, especially Equations (13) and (14), have
allowed researchers to extract the energy landscape parameters
k0 and "x0 from measurements of rupture forces conducted in
the force-ramp mode.[17,18]

3. Second-generationmodels

The Bell–Zhurkov model correctly predicts many features of
force-induced rupture in both the constant-force and constant
speed pulling modes, but suffers from several limitations due
to its phenomenological nature. In particular, the model lumps
all features of the energy landscape into a single parameter, the
barrier distance "x0, assuming that the external force affects
only the energy barrier (lowering it by F"x0). However, as dis-
cussed below, the force-perturbed landscape exhibits not only a
reduction in the energy barrier but also a reduction in the barrier
distance, resulting in a rupture rate that depends on the shape
of the energy landscape. The departure from the Bell–Zhurkov
rate becomes more severe at modest to large forces, limiting
the validity of the Bell–Zhurkov model to small forces and slow
pulling rates. These limitations were first recognised by Evans
andRitchie [15], who employedKramers’ theory [19] to capture
the effect of force-induced changes in the shape of the landscape
on the rupture rates k(F) and the distribution p(FR) of rupture
forces. While this initial effort only led to approximate models,
subsequent efforts have led tomore sophisticatedmodels. Before
describing these models based on Kramers’ theory, we provide
some essential details of this classic theory, following closely the
derivation provided by Hänggi and coworkers [20].

3.1. Kramers’ theory of reaction rate at high friction

In 1940, Kramers provided an elegant, closed-form solution for
the rate of escape of a Brownian particle over a potential energy
barrier. While the original theory treats weak, moderate and

Figure 5. Schematic of the setup used by Kramers to derive the rate of escape k of
a Brownian particle trapped within a potential well (see text for details).

high-friction cases, we limit our discussion to the latter regime,
which is the most applicable to SMFS experiments.

The theory considers Brownian motion of a particle along a
single coordinate x within a position-dependent potential en-
ergy fieldU(x) exhibiting a minimum at x = xmin and a barrier
at x = xmax (Figure 5). The particle experiences two kinds
of forces: a deterministic force −dU/dx arising from the field
and a stochastic force ξ(t) arising from external friction. Under
conditions of high friction, the particle undergoes stochastic
motion and its position ξ(t) canbedescribedby theoverdamped
Langevin equation [20,21]:

dx
dt

= 1
ζ

[
−dU

dx
+ ξ(t)

]
, (15)

where ζ is the friction constant given by the ratio of the viscous
drag force exerted by a stationary fluid on a moving particle
to the particle velocity; for a sphere of radius R in a fluid of
viscosity η, Stokes law gives ζ = 6πηR. The fluctuating force
ξ(t) is assumed to be a Gaussian-distributed random variable
uncorrelated in time with zero mean and variance of 2ζkBT .
In such a scenario, the probability ρ ≡ ρ(x, t) (technically
probability density) that the particle is located at position x
at time t is governed by the particle-conservation equation

∂ρ

∂t
= − ∂J

∂x
, (16)

where J ≡ J(x, t) is the probability flux given by the sum of a
diffusive and a ‘drift’ component:

J = −kBT
ζ

∂ρ

∂x
− 1

ζ

∂U
∂x

ρ, (17)

leading to the well-known Smoluchowski equation.[22]
Note that Equations (16) and (17) are analogous to the mass-
conservation andmolar-flux equations used for describingmass
transport in fluids.[23] In the latter case, a molar fluxN replaces
J , a molar concentration c replaces ρ, a diffusivity D replaces
kBT/ζ and a convective velocity v replaces the −(∂U/∂x)/ζ
term.

To calculate the rate of escape k of a particle from the poten-
tial well across the barrier, Kramers assumed that the potential
well is sufficiently deep, i.e."U ≡ U(xmax)−U(xmin) >> kBT ,
such that the rate of escape is sufficiently small that it allows the
particle to attain a near-equilibrium state inside the well. Next,
a special scenario was considered, where the particle is instantly
removed when it reaches position x = x+ > xmax, after crossing
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over the barrier. At the same time, particles are introduced into
the well at a rate such that a steady-state flux J(x) and a steady-
state probability density ρ(x) is eventually developed. It must
then follow from Equation (16) that J(x) is also independent of
position; we denote this constant flux by J0. The rate of escape
k gives the conditional probability of escape per unit time given
that the particle is present in the well. In contrast, the flux J0
gives the probability of escape per unit time when the particle
has a probability p0 =

∫ xmax
−∞ ρ(x)dx of residing within the well,

implying that
k = J0/p0. (18)

The flux J0 can be obtained from Equation (17) by multiplying
both sides by the factor eU(x)/kBT and assimilating the two terms
on the right-hand side into a single differential:

J0 = −kBT
ζ

e−U(x)/kBT ∂

∂x

[
ρ(x)eU(x)/kBT

]
. (19)

Integrating the two sides within the limits x+ and x and recog-
nising that ρ(x+) = 0, we obtain

ρ(x) = ζ J0
kBT

e−U(x)/kBT
∫ x+

x
eU(y)/kBTdy. (20)

The transition rate kmay then be obtained from Equation (18):

k = kBT
ζ

[∫ xmax

−∞
dx e−U(x)/kBT

∫ x+

x
dy eU(y)/kBT

]−1
. (21)

The above expression can be further simplified for the case of
large barrier heights. Specifically, the outer integral is dominated
by the value of U(x) close to the minimum xmin and the inner
integral is dominated by values of U(x) close to the maximum
xmax, whereupon one can invoke the harmonic approximations

U(x) ≈ U(xmin) + 1
2
U ′′(xmin)(x − xmin)

2, for small

|x − xmin|, (22)

U(x) ≈ U(xmax) − 1
2
|U ′′(xmax)|(x − xmax)

2, for small

|x − xmax|. (23)

where U ′′(xmin) ≡ d2U/dx2|xmin and U ′′(xmax) ≡ d2U/dx2
|xmax are the local curvatures of the potential well and barrier
regions. These approximations allow the two integrals to be
decoupled and analytically evaluated:

∫ xmax

−∞
dx e−U(x)/kBT ≈ e−U(xmin)/kBT

×
√
2πkBT/U ′′(xmin), (24)∫ x+

x
dy eU(y)/kBT ≈ eU(xmax)/kBT

×
√
2πkBT/|U ′′(xmax)|. (25)

Substituting, Equations (24) and (25) into Equation (21) yields
the classic result for the barrier-crossing rate:

k =
√
U ′′(xmin)|U ′′(xmax)|

2πζ
e−"U/kBT . (26)

Figure 6. Tilting of an energy landscape by an external force reduces not only the
energy barrier"G but also the barrier distance"x . The black curve represents the
intrinsic landscape G(x)modeled as a linear-cubic polynomial (Equation (29)) with
barrier height"G0 and barrier distance"x0. The remaining curves show the tilted
landscape Geff(x; F) = G(x) − Fx for different magnitudes of applied force F as
labelled. All curves have been shifted so that their minima are located at x = 0
and Geff = 0; the open circles identify the minima and maxima in each curve. All
quantities are reported in dimensionless units: x∗ ≡ x/"x0, G∗ ≡ G/"G0, and
F∗ ≡ F"x0/"G0.

Kramers’ theory thus suggests that the transition rate decreases
with increasing solvent friction and increasing barrier height,
both of which are consistent with experimental observations
in the high-friction limit. The theory further demonstrates the
role of the curvature of the potential energy landscape: sharper
curvatures keeping the same barrier height "U fixed, which
implies a smaller distance between thewell andbarrier, naturally
lead to higher transition rates.

3.2. Application of Kramers’ rate to force-tiltedmodel
lansdcapes

In a landmark study, Evans and Ritchie [15] demonstrated the
utility of Kramers’ theory for deriving rupture rates k(F) and
rupture forces p(FR) without resorting to phenomenological
models. Several arguments were provided for the relevance of
Kramers’ theory to SMFS. First, the pulling experiments are
typically carried out in a solvent, providing a high-friction envi-
ronment in which Kramers’ high-friction rate (Equation (26))
becomes valid. Second, the molecular systems probed in the
experiments are typically stabilised by strong intermolecular in-
teractions, indicating a large energy barrier between the bound
and unbound states, another key requirement for the validity of
Kramers’ theory. Finally, even though a molecular system may
intrinsically unfold or unbind through multiple paths within
the multi-dimensional conformational space, the application of
a stretching force serves to collimate the reaction path along
the direction of pulling, providing even stronger basis for the
applicability of Kramers theory derived for a single reaction
coordinate.

Evans and Ritchie recognised that in the presence of an
external force F, the deterministic force −∂U/∂x experienced
by the particle in Kramers’ theory (Equations (15) and (17))
must be replaced by −∂U/∂x + F, which causes the potential
U(x) appearing later in the derivation to be replaced by the
effective potentialU(x)− Fx. They subsequently examined this
‘tilting’ effect of force F on specific functional forms of the
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intrinsic energy landscape G(x); note that the potential energy
U(x) used in Kramers’ theory has been replaced by the po-
tential of mean force G(x). The resulting effective landscape
Geff(x; F) = G(x) − Fx exhibited not only a reduction in the
energy barrier"G(F)with increasing force, as proposed by Bell,
but also a reduction in the distance "x(F) to the barrier along
and non-trivial changes in the curvature of the potential well
and barrier regions. Figure 6 illustrates these effects for a model
landscape described by the linear-cubic polynomial discussed
below. Note that, contrary to Bell’s proposition, the barrier
does not disappear at a force F equal to "G0/"x0. By deriving
approximations for "G(F) and the curvatures G′′(xmin; F) and
G′′(xmax; F) and substituting them intoKramers’ rate (Equation
(26)), Evans and Ritchie obtained approximate scalings for the
dependence of k(F) on the applied force F.

Since thiswork, significant progress has beenmadeon the ap-
plication of Kramers’ theory to other energy landscape models,
[16,24–28] examining the properties of the predicted rupture
rates and forces,[25,26,29] testing the assumptions of Kramers’
theory as applied topulling experiments,[30,31] studyingmolec-
ular transitions in multi-dimensional landscapes,[32] and elu-
cidating the effects of the roughness of the energy landscape on
transition rates.[33,34]

We restrict our discussion to the seminal work of Dudko,
Hummer, and Szabo [25], who examined two different func-
tional forms of the energy landscape to derive analytical expres-
sions for k(F), p(FR), and FR as a function of the parameters
k0, "G0 and "x0 of the energy landscape. To combine the
results from the twomodel landscapes into a unified framework,
an additional parameter ν that characterises the shape of the
energy landscape was proposed. The resulting model provides
a powerful means for recovering properties of the underlying
energy landscape from rupture rate and force measurements.
The two energy landscape models that were examined are the
linear-cubic potential (Equation (27)) and the cusp potential
(Equation (28)):

G(x) = 3
2
"G0

(
x/"x0

)
− 2"G0

(
x/"x0

)3 , (27)

G(x) =
{

"G0
(
x/"x0

)2 x < "x0
−∞ x ≥ "x0

, (28)

which were designed to exhibit an energy barrier of "G0 and a
barrier distance of"x0. Belowwedemonstrate how k(F)wasde-
rived for the linear-cubic potential. We leave the corresponding
derivation for the cusp potential as an exercise for the readers.

The intrinsic linear-cubic potential exhibits a minimum at
xmin = −"x0/2 with G(xmin) = −"G0/2 and a maximum at
xmax = "x0/2withG(xmax) = "G0/2. The application of force
F tilts the energy landscape, yielding the effective landscape

Geff(x; F) = 3
2
"G0

(
x/"x0

)
− 2"G0

(
x/"x0

)3 − Fx, (29)

whose minimum and maximum get shifted inwards towards
x = 0 andGeff = 0, reducing both the barrier distance"x(F) ≡
xmax(F)−xmin(F) and thebarrier height"G(F) ≡ Geff(xmax(F);
F) − Geff(xmin(F); F) (see Figure 6). It can be shown that the
locations of the new force-dependent minimum and maximum

are given by

xmin(F) = −α"x0
2

, xmax(F) = α"x0
2

, (30)

where α ≡ α(F) =
(
1 − 2F"x0/3"G0

)1/2. The free energy
values at the two extrema are:

Geff(xmin) = −α3"G0
2

, Geff(xmax) = α3"G0
2

, (31)

and the local curvatures at the two points are:

G′′
eff(xmin) = 6α"G0

"x02
, G′′

eff(xmax) = −6α"G0

"x02
. (32)

Substituting"G(F),G′′
eff(xmin(F); F) andG′′

eff(xmax(F); F) into
Kramers’ rate (Equation (26)) and comparing the resulting ex-
pression with the intrinsic rate constant k0 ≡ k(0) yields

k(F) = k0
(
1 − 2F"x0

3"G0

)1/2

exp

[
"G0
kBT

{

1 −
(
1 − 2F"x0

3"G0

)3/2
}]

. (33)

The rate k(F) corresponding to the cusp potential can be derived
similarly.

Comparing the rates from the linear-cubic and cusp poten-
tials and the Bell–Zhurkov model (Equation (3)), Dudko et al.
realised that all three rates could be combined into a unified
framework:

k(F) = k0
(
1 − νF"x0

"G0

)1/ν−1

exp

[
"G0
kBT

{

1 −
(
1 − νF"x0

"G0

)1/ν
}]

, (34)

with ν = 1/2, 2/3 and 1 yielding rates for the cusp, linear-
cubic and Bell–Zhurkov models. The results illustrate how the
effect of the imposed force is distinct from that of the Bell–
Zhurkov model: the force reduces the energy barrier by an
amount smaller than −F"x0 prescribed by the phenomeno-
logical model and it also reduces the curvatures of the potential
well and barrier causing a reduction in the barrier distance, all
of which are assumed to be fixed in Bell–Zhurkov model. The
first of these effects appears in the exponential term in Equation
(33) and the second effect appears in the prefactor. Both effects
contribute to a reduction in the rupture rate relative to Bell–
Zhurkov rate, especially at large forces (Figure 7(A)). Indeed,
it can be shown that the rates from both models reduce to
the Bell–Zhurkov model at small forces F << "G0/"x0. It
is also noted that the new rate expressions are functions of not
only "x0 and k0, but also of "G0, enabling a more complete
description of the underlying energy landscape to be recovered
by fitting Equation (34) to experimentally measured k(F). The
above framework also reveals the role of the shape of the energy
landscape in dictating rupture rates. This role is embodied in
the parameter ν, which can be fitted to experimental results to
yield information about the shape of the energy landscape.
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Figure 7.Bell–Zhurkovmodel overpredicts rupture rates andunderpredicts rupture
forces, especially at large loads and loading rates. Comparison of Dudko–Hummer–
Szabo model using the cusp model potential (ν = 1/2) (red lines) and the linear-
cubic model potential (ν = 2/3) (blue lines) for two different landscapes with
barrier heights "G∗

0 = 10 (solid lines) and 20 (dashed lines) against the Bell–
Zhurkov model (black lines). (A) Rupture rate k∗ versus imposed force F∗ , and
(B) average rupture forces F∗

R versus loading rate Ḟ∗ . All quantities are reported
in dimensionless units: "G∗ ≡ "G/kBT , k∗ ≡ k/k0, F∗ ≡ F"x0/kBT , F∗

R ≡
FR"x0/kBT , and Ḟ∗ ≡ Ḟ"x0/k0kBT .

3.3. Rupture forces under linearly-increasing loads

The rates k(F) derived above were subsequently used within
the survival-probability formalism (Equation (9)) to obtain the
rupture force distribution, which can also be cast in the unified
form through the use of the shape parameter ν:

p(FR) = k(FR)

Ḟ
exp

[
k0kBT
Ḟ"x0

]

exp

[

−k(FR)kBT
Ḟ"x0

{
1 −

(
νFR"x0

"G0

)}1−1/ν
]

. (35)

Again, setting ν = 1 results in the p(FR) derived earlier using
the Bell–Zhurkov model (Equation (10)). It was also possi-
ble to obtain analytical approximations for the mean FR =∫ ∞
0 FRp(FR)dFR and variance σ 2

FR = F2R − FR
2 of the above

force distribution:

FR ≈ "G0
ν"x0

{

1 −
[
kBT
"G0

ln
k0kBTe"G0/kBT+γ

Ḟ"x0

]ν}

(36)

σ 2
FR ≈ 1

6

(
πkBT
"x0

)2
[
kBT
"G0

ln
k0kBTe"G0/kBT+γ̃

Ḟ"x0

]2ν−2

,(37)

where γ = 0.577 and γ̃ = 1.064. Interestingly, γ = 0 yields
a good approximation for the most probable force FR,mp. As
with Bell–Zhurkov model, the mean rupture force increases
with increasing barrier height "G0 and loading rate Ḟ and
decreasing barrier distance "x0 and rate k0, though the precise
dependencies are more complex. Consistent with the results for
the rupture rates, the abovemodel predicts higher rupture forces
than the Bell–Zhurkovmodel for the same loading rates (Figure
7(B)).

4. Third-generationmodels

4.1. Modeling effects of device stiffness

In the models described so far, the pulling device has been
assumed to be ‘soft’, where the device stiffnessK ismuch smaller

than the stiffness of the molecular system being studied. This
leads to a linear tilting of the energy landscape along the pulling
direction via Geff(x; F) = G(x) − Fx, and also results in the
imposition of a linearly increasing force given by F(t) = KVt.
However, both of these considerations no longer hold truewhen
the device stiffness is not negligible, as recently demonstrated
by Maitra and Arya [35].

To investigate the first consideration, a combined free energy
landscape of the molecule and pulling device for the configura-
tion shown in Figure 8 is formulated.[16,24,35] Here, a pulling
device with a probe of Hookean stiffness K is directly linked to
a molecule (or connected via a rigid linker) whose intrinsic free
energyG(x) along the pulling coordinate x exhibits a minimum
at x = 0. Before pulling commences, themolecule is assumed to
be thermally equilibrated in the potential well and themolecular
coordinate resides on average at position x = 0. At time t = 0,
the device is moved in the positive-x direction at speed V . At
time t, the device has moved a distance Vt, leading to a net
deflection of (Vt − x) ≡ δx in the probe from its equilibrium
position for amolecular coordinate at position x. The combined
free energy of the molecule and the device is then given by

Geff(x; t) = G(x) + 1
2
K

(
Vt − x

)2
. (38)

Expanding the second term and ignoring the resulting 1
2KV

2t2
term, which only translates the energy landscape upwards with-
out having any effect on the rupture rate, yields:

Geff(x; t) = G(x) − KVtx + 1
2
Kx2. (39)

The second term is the usual force-induced tilting of the energy
landscape that lowers the energy barrier for rupture. The third
term, usually ignored, represents a contribution from the device
that, in contrast, raises the energy barrier "G, as illustrated in
Figure 9 using the example of a linear-cubic potential. Physi-
cally, this term represents the additional energy required for the
molecule to push the pulling device for it to cross over the energy
barrier. Another effect of this term is extending the distance"x
to the barrier, as noted from Figure 9.

To investigate the second consideration, we examine the
force experienced by the molecule. We assume quasi-static
pulling conditions, where V is small enough to allow the
molecule and pulling device to thermally equilibrate. In such
a scenario, the force F(t) = K(Vt − x) imposed by the de-
flected probe should roughly balance out the force Kmx de-
veloped in the molecule, where Km is the effective stiffness of
the molecule characterised by the curvature G′′(x)|x=0 of the
intrinsic landscape. By equating the two forces, similar to what
is done when two springs are placed in series, it can be shown
that the molecule experiences a force

F(t) = KVt
χ

, where χ ≡ 1 + K/Km, (40)

which is clearly lower than the ‘apparent’ force F1(t) = KVt one
might estimate purely from the displacement (Vt) of the pulling
device. The above springs-in-series formulation further reveals
that the device displacement Vt is related to the mean displace-
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Figure 8. Schematic of a pulling experiment in which the device (AFM cantilever) is
directly connected to the molecule. At time t > 0, the device has translated by an
amount Vt and the concurrent displacement in the molecular coordinate is x .

Figure 9. Device stiffness raises the energy barrier and extends the barrier distance
from the minimum. Comparison of the intrinsic and force-tilted energy landscape
pulled with an infinitely soft pulling device with K∗ → 0 (dashed lines, with
maxima marked by open circles) and a moderately stiff pulling device with K∗ =
0.3 (solid lines, with maximamarked by open squares), which is still 20 times softer
than the molecule with an effective stiffness of K∗

m = 6. Five different force levels
in the range F∗ = 0 to 1 are considered, specified in the figure. All quantities are
reported in dimensionless units: x∗ ≡ x/"x0, G∗ ≡ G/kBT , F∗ = F"x0/kBT , and
K∗ ≡ K"x02/"G0.

ment ⟨ξ(t)⟩ and deflection ⟨δx(t)⟩ of the molecular coordinate
and probe at time t (before rupture) via

⟨x(t)⟩ = [K/(K + Km)]Vt = (K/Km) ⟨δx(t)⟩ , (41)

indicating that only for infinitely soft probes (K << Km) do
the device displacement and probe deflection become identical.
Similarly, only for infinitely stiff probes (K >> Km) does the
displacement in molecular coordinate follow that of the device.

The ensuingdiscussion shows that a stiffpulling device serves
to raise the energy barrier and extend the distance to barrier
and also causes the molecule to experience a smaller pulling
force than thatmeasured from device displacement, all of which
inhibit the rupture transition. Considering the characteristic
variation in G(x) by the barrier height "G0 and the charac-
teristic variation in x by the barrier distance "x0, Equation
(39) shows that the effect of device stiffness is negligible only

when K << 2"G0/"x02, which provides a reasonable criterion
for a ‘soft’ device. This criterion also implies that K << Km,
given that the stiffness of the molecule is also on the order
of 2"G0/"x02. Thus, for soft devices, Equation (39) reduces
to the usual landscape-tilting effect of the force Geff(x; t) ≈
G(x) − F(t)x and Equation (40) reduces to the usual force
F(t) ≈ KVt used for deriving the earlier models. The parameter
χ introduced above thus characterises the extent of departure
from the soft-device approximation.

While several studies have examined the effect of device
stiffness in modulating the rupture rates and forces through
simulations,[36,37] we will focus the remaining discussion on
the work of Maitra and Arya [35], who succeeded in obtaining
analyticalmodels quantifying these effects in an elegantmanner.
For this purpose, the authors adopted a shifted version of the
linear-cubic potential as the intrinsic energy landscape:

G(x) = 3"G0
2"x0

(
x − "x0/2

)
− 2"G0

"x03
(
x − "x0/2

)3 , (42)

so that its minimum is located at x = 0. For this model land-
scape, the parameter χ is given by

χ ≡ χ(K) = 1 + K"x02/6"G0. (43)

The intrinsic energy landscape (Equation (42)) was next modi-
fied using Equation (39) and the time-dependent energy barrier
"G(x; t) and time-dependent curvatures G′′(x; t) at the mini-
mumandmaximumof themodified landscapewere determined
analytically as a function of time t. Substituting these quan-
tities into Kramers’ rate expression (Equation (26)), replacing
KVt with χ(F) (where F is the true force experienced by the
molecule) and comparing the resulting rate to the intrinsic
rupture rate k0 yielded the following analytical form for the
force-dependent rupture rate:

k(F) = k0
(

χ2 − 2F"x0
3"G0

χ

)1/2

exp

[
"G0
kBT

{

1 −
(

χ2 − 2F"x0
3"G0

χ

)3/2
}]

. (44)

Note that the above expression reduces to the result derived
earlier for soft devices with ν = 2/3 (Equation (33)) when
χ → 1 (K → 0). The above result plotted in Figure 10(A)
for different stiffness values demonstrates that the rupture rate
decreases with increasing stiffness (increasing χ) of the pulling
device, as illustrated in andas explained earlier inphysical terms.
Intriguingly, the rupture rates, especially at small forces, do not
converge to the rates obtained with soft devices (K = 0) even
whenK << 6"G0/"x02. It was found from asymptotic analyses
that the true soft-device criterion is K << 2kBT/"x02, a much
stricter condition than specified above.

One can also derive an analytical form of the rupture force
distribution p(FR) under dynamic loading conditions using the
above rupture rate in Equation (9), noting that the true loading
rate Ḟ ≡ dF/dt experienced by the molecule is equal to KV/χ

(and not KV ):
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Figure 10. Device stiffness lowers rupture rates and raises rupture forces. Comparison of (A) rupture rates k∗ and (B) mean rupture forces predicted from the Maitra-Arya
model for pulling devices with stiffness varying in the range K∗ = 0 to 2; the effective stiffness of the molecule is K∗

m = 120. The rupture rates are plotted as a function
of imposed force F∗ and the mean rupture forces F∗

R are plotted as a function of the imposed loading rate Ḟ for the linear-cubic landscape with an energy barrier of
"G∗

0 = 20. The results for K∗ = 0 reduce to the Dudko–Hummer–Szabo model with ν = 2/3. Results from Bell–Zhurkov model are shown for reference. All quantities
are reported in the same dimensionless units as in Figure 7.

p(FR) = k(FR)eqX

Ḟ

exp

[

−k(FR)kBT
Ḟχ"x0

(
χ2 − 2FR"x0

3"G0
χ

)−1/2
]

, (45)

where q ≡ exp[(1 − χ3) "G0/kBT] ≈ exp[−0.5K"x02/kBT]
and X ≡ k0kBT/χ Ḟ"x0. The mean and variance of the rupture
force distribution were also derived:

FR ≈ 3χ"G0
2"x0

[

1 −
{
1 − kBT

"G0

eqXE1(qX)

χ3

}2/3]

, (46)

σ 2
FR ≈ 1

6

(
πkBT
"x0

)2 1
χ4(1 + qX)2

[
1 − kBT

"G0

eqXE1(qX)

χ3

]−2/3
,

(47)

where E1 is the exponential integral introduced earlier. Again,
it can be observed that when χ → 1 (also causing q → 1),
p(FR), FR and σ 2

FR all reduce to the expressions derived under
soft-device approximation for ν = 2/3 (Equations (35)–(37)).
Inspection of Equations (46) and (47) reveals that an increase
in device stiffness K (or χ) leads to increases in both the mean
rupture force, as shown in Figure 10(B), and the variance of
the rupture force distribution due to the physical reasons men-
tioned earlier. On the whole, these results (Equations (44) and
(46)) imply that experimental data analysedwithmodels derived
using soft devices (e.g. Equations (33) and (36)) will overpredict
parameters like "G0 and "x0 (which cause a reduction in
rupture rate and increase in rupture forces) and underpredict
parameters like k0 (which cause the opposite effects). A thor-
ough discussion on the errors involved in neglecting device
stiffness can be found in the original study.[35] Also, analo-
gous expressions for k(F;χ), p(FR;χ), FR(χ) corresponding
to the cusp potential are now available from Bullerjahn et al.
[28].

4.2. Modelling combined effects of device stiffness and
pulling handles

We discuss here the most general case of a pulling device con-
nected to the molecular system via an intervening polymeric
‘handle’, typically a robust, inert polymer like DNA or poly
(ethylene glycol) that prevents non-specific interactions between
the device and the molecule. It is well known [38–42] that
polymer handles, as a result of their non-linear elasticity, can
alter rupture rates and forces in highly non-trivial ways and cap-
turing such effects in an analytical framework is highly desirable.
Maitra and Arya [43] showed that the most rigorous approach
of treating such a system is to write down the combined free
energy of the device, handle, and molecule, as done earlier for
the simpler case of the device connected directly to themolecule.
In addition to the molecular coordinate x, a second coordinate
x1 specifying the position of the end of the handle attached to
the device needs to be introduced (see Figure 11). The combined
free energy of the system can now be written as

Geff(x, x1; t) = G(x) + Gd(Vt − x1; t) + Gh(x1 − x; t), (48)

where G(x) specifies, as usual, the intrinsic free energy of the
molecule along the pulling coordinate, Gd(Vt − x1; t) = 1

2K
(Vt − x1)2 specifies the free energy of the pulling device of
Hookean stiffnessK as a function of probe displacementVt−x1,
andGh(λ; t) specifies the free energy of the handle as a function
of its extension λ ≡ x1 − x. For a relatively stiff polymeric
handle like DNA, this free energy is typically treated using the
worm-like chain (WLC) model [44]:

Gd(λ; t) = kBT
2P

[
L

2
(
1 − λ

L
) + λ2

L
− λ

2

]

, (49)

where P and L are the persistence length and contour length of
the polymer chain. For flexible polymers, a freely jointed chain
model becomes more appropriate.
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Figure 11. Schematic of a pulling experiment in which the device is connected to
the molecule via a molecular handle. At time t > 0, the device has translated by
an amount Vt. The displacement in the molecular coordinate and the end of the
handle are characterised by variables x and x1, respectively.

To determine rupture rate k(F), one may apply Kramers’
theory to the effective free energy landscape Geff(x, x1; t) as a
function of time t to obtain the rate k(t) and then transform t
to the imposed force F using a functional relationship F(t) to
obtain k(F). However, this is complicated because the energy
landscape is a function of two coordinates. Fortunately, x1 may
be determined as a function of x under conditions of quasistatic
pulling. In other words, when the molecule and the polymer
relax at a time scale much faster than that associated with
pulling, the forces developed within the handle, molecule and
device equilibrate rapidly andmay be considered for all practical
purposes to be equal, thus allowing determination of x1(x).
However, x1(x) cannot be obtained analytically for a realistic
polymer model such as that provided in Equation (48), and a
closed-form expression for k(F) could not be derived. Instead,
k(F)was obtained numerically by solving for x1 at progressively
increasing times, solving Kramers’ equation to obtain k(t), and
then transforming t to F via the relation F(t) = K(Vt−x1). The
rupture force distribution p(FR)was then obtained via Equation
(9), where the computed loading rate dF/dt (instead of KV)
was used and the mean rupture force FR was obtained from
integrating p(FR) as usual.

The computed k(F) revealed interesting trends with respect
to varying K and L values, with P = 50 nm fixed to represent
double-stranded DNA. It was found that for sufficiently long
handles with L ! 4

√
P"x0("G0/kBT)3 or for sufficiently soft

devices with K << 2kBT/"x02, the rupture rate may be pre-
dicted for all forces using themodels described earlier.However,
when both conditions are not met, the harmonic stiffness K
of the device and the anharmonic stiffness Kh of the handle
become important and affect the rupture rates and rupture
forces in distinct ways. While no analytical model exists for
describing the combined effects of the device and handle, the
model derived earlier (Equation (44)) with a reparameterised χ

parameter was found to provide an excellent approximation for
the numerically obtained k(F). In particular, χ , which captured
well the stiffness effects arising from the pulling device, was
modified to incorporate the combined compliance K ′ of the
handle and the device:

χ(F) = 1 + K ′/Km = 1 +
[
1/K + 1/Kh(F)

]−1
/Km, (50)

where the effective stiffness of the molecule Km and the WLC
handle Kh(F) are given by [45]

Km = 6"G0/"x20, Kh(F) ≈ 3 + 5FP/kBT + 8(FP/kBT)2.5

2FP/kBT(1 + FP/kBT)
,

(51)
With the more complex χ(F) (Equation (50)) within the

rate expression k(F) in Equation (44), analytical expressions for
p(FR), orFR, could not be obtained.Nonetheless, the parameters
k0, "G0, and "x0 may still be inferred from experimentally
measured rupture forces by converting p(FR) to k(F) by means
of the relationship suggested by Dudko et al. [45]

k(F) = Ḟp(F)

1 −
∫ F
0 p(FR)dFR

, (52)

which is essentially the inverse of Equation (9) and can be
obtained from Equation (8). Since it is challenging to obtain
Ḟ at the point of rupture due to inherent non-linearity of the
F-x relationship, one can estimate this quantity via Ḟ = KeffV ,
where Keff = (1/K + 1/Km + 1/Kh)

−1 represents the effective
stiffness of the pulling device, molecule, and handle.

As a final note, we emphasise that the force dependence
in k(F) discussed so far is assumed to arise from the force-
induced tilting effect of the 1D free-energy landscape based
on the existence of a single reaction coordinate parallel to the
pullingdirection.However, one can envision a scenario inwhich
multiple reaction coordinates exist, where a path orthogonal to
the pulling coordinate dominates transition rates at equilibrium
(zero force) and a path parallel to the pulling coordinate begins
to dominate the rate at large forces, due to the biased tilting
of the landscape in the pulling direction. In such a case, the
experimentally measured k(F) will also include contributions
fromsuch a force-dependent switch between two reactionpaths.
Such an effect is not treated in any of the models discussed so
far but is certainly a topic of current interest.[31]

5. Molecular simulations

Molecular simulations are numerical techniques that compute
the conformational dynamics of molecules based on their in-
teractions with each other and with external fields. Simulations
have played an important role in testing many of the theoretical
models presented here, investigating the validity of several of
their underlying assumptions, and providing new insights into
force-driven molecular transitions. Below, we review two types
of simulation approaches that have been used to study such
transitions.

5.1. Molecular dynamics

Molecular dynamics (MD) simulations, in their simplest form,
involve integration of Newton’s equations of motion for each
and every atom in the molecular system:

dri(t)
dt

= vi(t), (53)
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mi
dvi(t)
dt

= Fi(t), (54)

wheremi is the mass of atom i, and ri and vi are its position and
velocity vectors at time t. Fi(t) represents the force experienced
by the atom, which is calculated as the gradient of the potential
energy with respect to atomic position: Fi(t) = −∇riU . The
total potential energyU(rN ) for anN-atomsystem is givenby an
intramolecular ‘force field’ accounting for the energies of bond
stretching, bond angle bending and dihedral angle rotation,
and an intermolecular force field accounting for Coulombic
and van der Waals interaction energies. The molecular system
is generally confined to a simulation box, of fixed or variable
volume V , implementing periodic boundary conditions. The
equations of motion in Equations (53) and (54), which simulate
the dynamics at constant energy, are usually modified to in-
troduce other constraints, such as constant temperature and/or
pressure. The simulatedmicrostates (molecular configurations)
rN are expected to satisfy the equilibrium probability density
distribution of the ensemble (thermodynamic state) being simu-
lated, e.g. Boltzmann distribution ρ(rN ) ∝ exp[−U(rN )/kBT]
in the canonical (constant-T) ensemble. For details of the force
field, integration algorithms, and various other technicalities of
MD simulations, we refer readers to several excellent textbooks
on this subject.[46–48]

The most evident use of MD simulations has been in eluci-
dating the molecular interactions responsible for the ‘apparent’
strength of biomolecules or their complexes (resisting their
unfolding or dissociation) observed in SMFS experiments. To
mimic the force-ramp experiment, the simulations hold one
end of the molecule fixed and attach a harmonic spring to the
other end that is pulled at constant speed via its free end. Using
such a protocol, researchers have examined forced unfolding of
a number of protein and protein domains [49,50] and the forced
dissociation of a variety of protein complexes,[51,52] with the
avidin-biotin complex being one of the first studied systems.
Another application has been in investigating the validity of the
pulling direction as the natural coordinate formolecular unfold-
ing anddissociation.[31,53,54]MDsimulationshave alsoplayed
a key role in elucidating the effects of the stiffness of the pulling
device on the measured rupture forces,[37] motivating the de-
velopment of models accounting for such effects.[35] With the
rapid, continuing increase in supercomputing power,[55] MD
simulations are expected to play an increasingly important role
in the design and interpretation of SMFS experiments.

5.2. Langevin and Brownian dynamics

The MD simulations described above compute the dynamics
of all atoms in the system, those of the molecule being studied
and of the surrounding medium, which may include solvent
molecules and ions. Due to limitations on the largest timestep
that can be used for integrating the equations of motion (∼1 fs),
the computational cost associated with studying the dynamics
of reasonable-sized molecules beyond 10–100 ns becomes pro-
hibitive. Furthermore, in many cases, one is not interested in
the detailed dynamics of the entire molecule being pulled but
only of themolecular coordinate describing the transition being
investigated.

The time evolution x(t) of this coordinate along the pulling
direction, assuming it represents the only relevant reaction co-
ordinate, is described by the Langevin equation, which approxi-
mates the effect of reducing the dimensionality of the molecular
system from 3N to one:

dx(t)
dt

= v(t), (55)

dv(t)
dt

= F(t) − γ v(t) + ξ(t), (56)

where m is an effective mass and v(t) is the velocity of the
molecular coordinate. The first term inEquation (56) represents
the effective force F = −∂G/∂x acting on this coordinate due to
the potential of mean force G(x) that arose from the projection
of the multi-dimensional energy landscape onto the coordi-
nate x. The second term represents the frictional force (viscous
damping) resisting the motion of the molecular coordinate,
where γ is a friction constant that is assumed to be independent
of x and t.[20] The third term represents a random force arising
from the thermal fluctuations in the original degrees of freedom.
This random force is generally modelled as a Gaussian white
noise (uncorrelated in time) with zero mean:

⟨ξ(t)⟩ = 0,
〈
ξ(t)ξ(t ′)

〉
= 2γ kBTδ(t − t ′). (57)

Further simplification of the Langevin equation is possible
under conditions of high friction (large γ ), a regime relevant
to most SMFS experiments, except those conducted at ultra-
fast force loading. In this scenario, the velocity relaxes much
faster than the position, allowing one to set the left-hand side
of Equation (56) to zero, leading to the overdamped Langevin
equation, also known as the Brownian dynamics (BD) equation:

dx(t)
dt

= F(t) + ξ(t)
γ

. (58)

Thus, themolecular coordinate behaves like a Brownian particle
in a viscous solvent, exhibiting a constantly varying ‘terminal
velocity’ according to the instantaneous force it feels from the
potential of mean force and from thermal fluctuations.

The primary role of Langevin and BD simulations, especially
the latter, in SMFS has been in testing and validating analytical
models. For instance, Evans and Ritchie [15] simulated the
Brownianmotion of a particle confinedwithin amodel potential
well G(x) and subjected to a linearly increasing force, such that
F(t) = −∂G/∂x+Ḟt in Equation (58).Hundreds of simulations
at each loading rate Ḟ were performed, and in each simulation,
the value of the forceFR atwhich the particle irreversibly crossed
the energy barrier was recorded. The distribution p(FR) in these
rupture forces at each Ḟ reproduced reasonably well those ob-
tained from their analytical model (Equation (10)) using the
Bell–Zhurkov expression for the rupture rate. Dudko and co-
workers [25] used similar BD simulations to show how well
their model for FR (Equation (35)) and for k(F) (Equation
(33)) captured the simulated rupture forces and the rupture
rates deduced via Equation (52). Maitra and Arya [35] also used
BD simulations, but with the particle connected to a harmonic
spring whose free end was pulled at a constant speed, to ob-
tain rupture forces and rates at different spring stiffnesses and
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pulling rates, which agreed well with the predictions of their
model (Equations (44) and (46)).

Such simulations have also provided many basic insights
into force-driven transitions, leading to better interpretation of
experiments andmore accurate analytical models. For example,
BD simulations were key to delineating the non-trivial effects of
the pulling device and the molecular handles on the measured
rupture rates and forces.[35,43] They have also been used to in-
vestigate the degree to which the external force collimates (pro-
motes)molecular trajectories through a transitionpath collinear
with the pulling direction.[31] BD simulations have also helped
ascertain the range of validity of the different theoretical models
developed over the years.[25,43] Finally, such simulations have
revealed novel features in the force-extension behaviour, helped
test estimation methods for recovering properties of the energy
landscape and elucidated non-equilibrium effects arising from
rapid force loading.[28,56,57] To conclude, Langevin and BD
simulations, due to their computational tractability and their use
of well-defined energy landscapes of any given dimension, will
continue to provide important insights into molecular transi-
tions, allowing researchers to validate increasingly sophisticated
models and to devise new, more powerful SMFS techniques.

6. Conclusions

This review discusses the theoretical basis for some of the key
statistical–mechanical models used for recovering features of
the underlying energy landscape governing molecular transi-
tions from single-molecule pulling experiments. Depending on
the pulling protocol, these experiments measure either rupture
rates as a function of constant applied forces or rupture forces
as a function of constant loading rates. We focused on a class of
analytical models developed over the years for fitting such mea-
surements of rupture rates and forces and recovering important
parameters of the energy landscape, namely, the height "G0
and location "x0 of the activation barrier and the rate constant
k0 of the transition.We began by discussing the first-generation
models based on the force-rate phenomenological relationship
of Bell and Zhurkov. Despite their simplicity, these models
have provided excellent approximations for rupture rates and
forces as a function of landscape parameters at small forces
and loading rates.Wenext discussed second-generationmodels,
pioneered by Evans and Ritchie, that avoid altogether the use
of phenomenological models. Instead, these models apply the
theoretical foundation of reaction rates at high friction laid by
Kramers to obtain rupture rates and forces for functional forms
of the energy landscape. These models go beyond the first-
generation models in terms of their wider range of applicability
and their ability to recover features of the energy landscape
not possible to obtain the earlier models. Lastly, we discussed
third-generation models that have extended these models to
account for stiffness effects arising from the pulling device and
from the polymer handles that connect the molecular system to
the device. These models illustrate how the rupture rates and
forces get modulated by stiffness effects and how to correct
for these effects to recover accurate estimates of the intrin-
sic parameters of the energy landscape. We concluded by dis-
cussing various molecular simulation approaches – molecular
dynamics, Langevin dynamics and Brownian dynamics – that

have provided and continue to provide new insights into force-
driven molecular transitions for better interpretation of the
experiments, for developing improved models to analyse force
measurements and for devising more informative experimental
approaches.
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