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ABSTRACT: Spherical nanoparticles (NPs) uniformly
grafted with polymer chains have recently been shown to
assemble into anisotropic phases like strings and sheets. Here
we investigated the underlying basis for anisotropic
interactions between polymer-grafted NPs in a polymer matrix
by computing via molecular dynamics simulations the potential
of mean force (PMF), and its three-body contribution, for a
test NP interacting with a NP-dimer along a set of reaction
coordinates differing in their orientation with respect to the
dimer axis. The polymer-mediated portions of the PMF and of the three-body contribution were both found to be highly
repulsive and anisotropic with the degree of repulsion rising with increasing angular deviation from the dimer axis. The
anisotropy was shown to arise from the expulsion of polymer grafts from in between the dimer NPs which leads to a gradient in
the graft segmental density around the dimer from its contact point to its poles. This effect produces a concomitant gradient in
steric repulsion between test and dimer NP grafts, a significant portion of which is however negated by an opposing gradient in
depletion attraction between NPs due to the matrix. The anisotropy in the polymer-mediated PMF was observed to be
particularly strong for NP−polymer systems with long grafts, high grafting densities, and short matrix chains. The overall PMFs
allowed us to compute the free energies of formation of two- and three-particle clusters, yielding a phase diagram in graft length−
grafting density parameter space analogous to that observed experimentally for the dispersed, stringlike, and sheetlike phases of
NPs. The PMFs also revealed possible existence of a stable dimer phase that remains to be tested experimentally. Taken together,
this study illustrates how the deformability of NP grafts can introduce novel anisotropic interactions between otherwise isotropic
NPs with far-reaching consequences in NP assembly.

■ INTRODUCTION

An emerging concept in materials science is the engineering of
anisotropic interactions between nanoparticle (NP) building
blocks to drive their self-assembly into higher-order structures
more complex than the random aggregates or simple close-
packed lattices nominally obtained from spherical NPs.1,2

Anisotropic interactions are most intuitively achieved by using
particle shapes that go beyond simple spheres,3 that is, by
exploiting the inherent anisotropy in the excluded volume
interactions between “shaped” NPs. Materials chemists are now
able to synthesize a rich variety of particle shapes, ranging from
simple rods and discs to more exotic ones like cones, tetrapods,
and various kinds of polyhedra,3−7 and assemble them into
anisotropic structures with some degree of success.8−10

Alternatively, the surface of NPs may be grafted or coated
with chemical ligands in an anisotropic manner to produce
gradients or discrete patches of ligands. Such “patchy” NPs may
be designed to exhibit anisotropic steric repulsion through
polymer grafting,11,12 anisotropic attraction through grafting of
sticky molecules such as single-stranded DNA,13 or anisotropic
response to external fields like magnetic fields.14

Recent studies however suggest that even NPs exhibiting
isotropic two-body interaction potentials may assemble into

anisotropic structures.15−17 The most striking evidence comes
from experiments on the assembly of spherical silica NPs
uniformly grafted with polystyrene chains within a polystyrene
matrix.17 It was found that, in addition to exhibiting dispersed
and densely packed aggregate phases expected of isotropic
particles, these NPs also assembled into anisotropic structures
like 1D strings and 2D sheets, depending on the length and
surface density of their polymer grafts. Similar anisotropic
phases have been observed in other grafted-NP systems as
well18−21 and also realized in molecular dynamics and Monte
Carlo simulations of simplified models of polymer-grafted
NPs.17,18,22 To explain the observed “phase diagram”, it was
proposed that the free energy of each phase is determined by a
competition between favorable enthalpic energy gained by
forming contacts between NPs and the entropic cost associated
with compressing the polymer grafts to form such contacts.22 In
general, the higher the dimensionality of a phase, the larger the
number of favorable contacts its NPs exhibit and the stronger
the confinement that their grafted chains experience. By using
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simple scaling relationships for the two effects, structures with
the lowest free energy were determined at various points across
the parameter space, yielding a phase diagram that qualitatively
agreed with that observed experimentally.
Key to the unusual stability of anisotropic structures in

polymer-grafted NPs is the anisotropic distribution of polymer
grafts that is supposed to develop when NPs come into close
contact.17,18,22 Specifically, approaching NPs push aside the
intervening polymer grafts, causing an increase in polymer
density near the contact region of the NPs. This effect is
believed to introduce an anisotropic steric repulsion felt by a
third approaching NP, wherein the dimer becomes more
susceptible to binding by the third NP at its two poles on the
longitudinal axis as compared to the contact region, thus
providing a natural driving force for the assembly of NPs into
1D strings. One would also presume that this steric repulsion
increases as one moves away from the NP poles and toward the
contact region, and hence, binding of NPs at other locations
along this path may be favored if the steric repulsion at those
locations can be compensated by additional favorable contacts
between the ensuing higher-order structures. Indeed, in the
absence of any such emergent three-body anisotropic
interactions arising from the polymer, the NPs would either
assemble into 3D hexagonally close-packed (“isotropic”)
structures that maximize the number of attractive contacts
between NPs or else remain dispersed if the attraction was
sufficiently weak.
Here we investigate such polymer rearrangement-based

origin of anisotropic interactions between polymer-grafted
NPs, a key hypothesis that has not been tested thus far. Our
approach involves using molecular dynamics (MD) simulations
of coarse-grained models of the NP−polymer system to directly
compute the potential of mean force of interaction between an
isolated NP and a NP-dimer as a function of their relative
separation and orientation and to relate any observed
anisotropy in the computed interaction to that in the polymer
conformations and density. Our results provide the first direct
confirmation of the above hypothesis and reveal new insights
into how the grafted and matrix polymer conspire to produce
anisotropic interactions between NPs. We further demonstrate
how variations in anisotropic interactions with respect to
parameters like NP-graft length, grafting density, and
interparticle-attraction strength lead to intriguing “phase
behavior” among various NP cluster configurations, including
a novel globally stable dimer phase whose existence remains to
be tested experimentally.

■ COMPUTATIONAL METHODS
System Design and Configuration. Our aim is to

investigate the anisotropy in the free energy of interactions
the potential of mean force (PMF)between an isolated
polymer-grafted NP termed “test” NP and a preassembled
dimer of polymer-grafted NPs in a polymer matrix and to
examine how such interactions lead to anisotropic structures.
Because of the symmetry of the dimer, the PMF can be
described in terms of two coordinates: the center-to-center
distance r between the test NP and one of the dimer NPs (see
Figure 1a) and the angle θ subtended by the line connecting
the centers of these two NPs with the longitudinal axis of the
dimer for characterizing the anisotropy in the system. Note that
the angle varies in the range θ = [0, π − cos−1(d0/2r)], where
d0 is the fixed center-to-center distance between the two dimer
NPs (Figure 1a).

To define “anisotropic structures” and “anisotropic inter-
actions” in the context of such a three-particle system, we
consider a simpler example where we replace the polymer
matrix with vacuum and replace the polymer-grafted NPs with
single particles that interact with each other via a pairwise-
additive isotropic potential U(r) exhibiting a single minimum at
r = rmin. Since the interaction depends on a single degree of
freedom (r), the two-body PMF W2(r) for this interaction is
simply equal to U(r). The overall three-particle PMFW(r,θ) for
the interaction between the test particle and the dimer is equal
to the sum of the two-body PMFs of the test particle with each
of the two dimer particles: W(r,θ) = W2(r) + W2(r2), where r
and r2 ≡ r2(r,θ) are the separation distances between the test
particle and the two dimer particles. Thus, the overall PMF
depends on the orientation angle θ (due to the interaction
W2(r2) arising from the one of the dimer particles) and is
therefore anisotropic. The most stable state of such a system is
obviously one in which the test particle sits symmetrically atop
the dimer at a separation distance of r = r2 = rmin and θ = π −
cos−1(d0/2rmin) coinciding with the minima of both the two-
body PMFs. We define this compact, assembled state of
particles as the “isotropic structure” for the three-particle
system, and all other configurations such as the linear
configuration of the three particles (where θ = 0) are termed
as “anisotropic structures”.
The above example clearly demonstrates that (1) the

anisotropy in the overall PMF W(r,θ) is not the most
appropriate indicator of the formation of anisotropic structures
and (2) overall PMFs that can be written as the pairwise sum of
isotropic two-body PMFs exhibiting a single energy minimum
will always form isotropic structures. Anisotropic structures in
such systems must therefore arise from multibody contribu-
tions, or three-body contributions in the context of three-

Figure 1. (a) Coordinate system used for describing anisotropic
interactions in a three-particle system. The test and dimer particles are
identical but shown in different color for clarity. (b) Schematic
illustrating how a strong angular dependence (anisotropy) in the
three-body PMF ΔW3 can cause particles to assemble into anisotropic
structures. (c) Schematic showing the four reaction coordinates
chosen for examining the anisotropy in three-particle interactions
between polymer-grafted NPs. The NP cores are shown as gray circles
and the polymer grafts as blue chains. The polymer matrix is not
shown for clarity. (d) Schematic showing the reaction coordinate used
for computing the isotropic two-particle interactions. All interactions
were computed as a function of the surface-to-surface distance d
between the test NP and the reference NP cores (or those of the
nearest dimer NP).
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particle systems. The overall three-particle PMF is then given
by W(r,θ) = W2(r) + W2(r2) + ΔW3(r,θ), where ΔW3
represents the three-body contribution that likely depends on
r and θ. Thus, if ΔW3 exhibits a strong angular dependence
(anisotropy), it allows for the possibility of anisotropic
structures becoming more stable than isotropic structures,
e.g., when ΔW3 is much larger for isotropic than anisotropic
configurations (Figure 1b). Hence, we define “isotropic
interactions” by interactions that either lead to negligible
ΔW3(r,θ) or angle-independent ΔW3(r,θ) ≈ ΔW3(r), whereas
“anisotorpic interactions” are defined in terms of the strength
and anisotropy in ΔW3(r,θ). In our polymer-grafted NPs, we
expect ΔW3(r,θ) to arise from the expulsion of polymer grafts
from in between the two dimer NPs.
We aim to compute and analyze the distance- and

orientation-dependent behavior of the overall PMF W(r,θ) as
well as its three-body contribution ΔW3(r,θ). The first quantity
provides a measure of the overall free energy of the three-
particle system and helps determine the stability of the various
assembled configurations of the system, both isotropic and
anisotropic. The latter quantity provides a measure of the
“anisotropicity” in the interactions between the test NP and the
NP-dimer and its underlying source. However, traversing such a
two-dimensional coordinate space in r and θ would entail
prohibitive computational costs. To this end, we computed the
PMF along four representative “reaction coordinates” spanning
the relevant angular space around one of the dimer NPs (Figure
1c): (1) longitudinal axis of the NP-dimer (denoted by x0°), (2)
tilted axis oriented 45° with respect to the longitudinal axis
denoted by (x45°), (3) perpendicular axis oriented 90° with
respect to the longitudinal axis denoted by (x90°), and (4)
different perpendicular axis that passes through the dimer
center of mass rather than through the NP center (x90°′ ). The
PMFs were obtained as a function of the surface-to-surface
distance d between the cores of the test NP and the closest
dimer NP and not the center-to-center distance as typically
used. For comparison, we also computed “two-particle” PMF
between a test NP and an isolated or “reference” NP also as a
function of their surface-to-surface distance d (Figure 1d).
Coarse-Grained Model. To compute the PMFs between

polymer-grafted NPs in a polymer matrix, we adopted a coarse-
grained model (Figure 2a) similar to one we previously used for

investigating the viscoelastic properties of polymer−nano-
particle composites.23 The model is simple as well as
computationally efficient and captures the essential physics of
free and grafted polymer chains and the interactions between
NP cores.
According to this model, segments of the grafted and matrix

polymer chains were treated as beads of size σ and mass m
(Figure 2b).24 Adjacent segments in each chain were connected
by a finitely extensible nonlinear elastic (FENE) spring with
potential energy given by
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where r is the separation distance between the bonded
segments, R0 = 1.5σ is the maximum possible length of the
spring, k = 30ϵ/σ2 is the spring constant, and ϵ is the
characteristic energy parameter of the system. The above choice
of parameters ensures that chains do not cross each other.
Excluded volume interactions between all pairs of polymer
segments, bonded or nonbonded, were treated using a short-
range, purely repulsive potential25
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where r is the distance between the segments. While highly
simplified, this polymer model captures well various exper-
imentally measured structural and dynamical properties of
simple polymeric melts spanning the Rouse and reptation
regimes, including the chain-length dependence of the diffusion
coefficient and the relaxation of the structure factor.24 In this
study, we examined graft chains of lengths Lg (in terms of
number of segments) in the range 5−20 and matrix chains of
lengths Lm in the range 1−40 segments. Apart from possible
differences in their lengths, the grafted and matrix chains were
considered to be chemically identical; that is, their segments
exhibit identical interactions.
The NP cores were treated as spheres of diameter Dc = 6σ

constructed out of a rigid simple cubic lattice of “atoms”
(Figure 2c). The total van der Waals (vdW) interactions
between two NP cores was then calculated as the sum of
individual vdW interactions between pairs of atoms across the
two NP cores with each interaction treated using the Lennard-
Jones (LJ) potential
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where r is the distance between the interacting atoms and σc
and ϵc are the atomic size and energy parameters, respectively.
Such atom-level treatment of NP cores allows us to accurately
capture the variation in the vdW interactions between NPs as a
function of their separation distance; note that an analytical
expression for such interactions between spheres is available for
only very short or very large distances. The precise values of the
lattice constant and atom size are not important as long as they
are sufficiently small to minimize discretization (faceting)
effects. We found that lattice constant λ and atom size σc set
equal to 0.35σ yielded reasonably isotropic energies, with less
than 10% variation in the total vdW energy across different

Figure 2. (a) Schematic of the simulation setup used for computing
three-particle PMFs between polymer-grafted NPs within a polymer
matrix. (b, c) Grafted polymer chains (blue) and matrix chains (green)
are treated as coarse-grained bead−chains. NP cores (gray) are treated
as spheres constructed from a rigid simple-cubic lattice of atoms.
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orientations of the NP cores. The strength of vdW interactions
can also be conveniently tuned by varying the value of ϵc. To
calculate the surface-to-surface distance d between NP cores,
we define their “surface” as the smallest spherical surface that
encloses all their atoms, accounting for their vdW radii σc.
Because the NP cores are rigid and near-isotropic, the
interaction potential energy between two NP cores is a
function of only their surface-to-surface separation distance.
The potential energy profile therefore needs to be computed
and tabulated just once before the MD simulations, which
allowed us to avoid the use of a LJ cutoff that is typically
employed in simulations.
The grafted chains were attached to the surface of each NP

core also using FENE springs (eq 1). The grafting points were
generated at the desired grafting density Γg using an
algorithm26,27 that yields a pseudouniform distribution of
points on the surface of each NP core. The grafting points were
treated as virtual beads and held fixed relative to each other and
to their NP core center by using rigid body constraints.
Excluded volume interactions between NP cores and the
polymer segments were also treated via a short-range, purely
repulsive potential
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where r is the distance between the centers of the interacting
NP and the polymer segments and the distance shift of rev =
(Dc − σ)/2 ensured that the polymer segments and NP cores
did not penetrate each other.
All simulation parameters and quantities are henceforth

reported in units of σ, m, and ϵ, which set the length, mass, and
time scales, respectively.
Potential of Mean Force Calculations. The PMFs along

each of the four reaction coordinates shown in Figure 1c were
computed using the so-called “blue moon ensemble”
method.28,29 This method involves the use of constrained
MD simulations to confine a molecular system defined by
atomic coordinates rN to a subensemble in which the reaction
coordinate ξ(rN) is held fixed at a particular value ξ′. The PMF
is calculated by thermodynamic integration of the “mean force”
(the negative of the ensemble-averaged gradient of the
Hamiltonian with respect to the reaction coordinate) collected
from multiple such simulations conducted at different fixed
values of the reaction coordinate. Accordingly, we performed
MD simulations of the polymer−NP system in which the
centers of the dimer NPs were held fixed and the test NP was
held fixed at different positions ξ′ along the examined reaction
coordinate. While calculation of this mean force can become
tedious for reaction coordinates that depend in a complex,
nonlinear manner with atom positions, the calculation is
relatively straightforward in our systems, where it reduces to
evaluating the time-average of the component of the true force
F(ξ′) experienced by the test NP from the reference NP or NP-
dimer along the direction of the reaction coordinate, which we
denote by ⟨F(ξ′)⟩.30,31 The mean forces obtained from
simulations conducted at different values of ξ′ were then be

integrated to obtain the PMF at any position d along the
reaction coordinate:

∫ ξ ξ= − ⟨ ′ ⟩ ′W d W d F( ) ( ) ( ) d
d

d

0
0 (5)

where W(d0) is the value of the PMF value at some reference
point d0 on the reaction coordinate. Choosing d0 to be a
sufficiently large distance ensures that the test NP does not
interact with the NP-dimer whereupon W(d0) ≈ 0. We refer to
the above PMF involving three NPs as “three-particle” PMFs. A
similar approach was used for computing “two-particle” PMF
between a test NP and an isolated or “reference” NP as a
function of their surface-to-surface distance d (Figure 1d). To
characterize the degree of anisotropy in these interactions, we
also computed the three-body contribution to the overall three-
particle PMFs via

Δ = − − ′W d W d W d W d( ) ( ) ( ) ( )3 2 2 (6)

where W2(d) and W2(d′) are the values of the two-particle
PMFs computed at the separation distances d and d′ of the test
NP from each of the two dimer NPs.
We also dissected the overall PMF into six different

contributions arising from the interaction between: NP-dimer
cores and test-NP core [Wc→c(d)]; NP-dimer grafts and test-
NP core [Wg→c(d)]; NP-dimer cores and test-NP grafts
[Wc→g(d)]; NP-dimer grafts and test-NP grafts [Wg→g(d)];
polymer matrix and test-NP core [Wm→c(d)]; and matrix and
test-NP grafts [Wm→g(d)]. Each of these contributions was also
computed via eq 5, by replacing the net force ⟨F(ξ′)⟩ with the
force component corresponding to the interaction being
probed. Note that all components of the PMF except Wc−c(d)
involve some type of polymer-mediated interaction. Therefore,
we can categorize the total PMF into a NP core-mediated
component, which we denote as Wc(d) ≡ Wc−c(d), and a
polymer-mediated component, which we denote as Wp(d)
≡Wg→c(d) +Wc→g(d) +Wg→g(d) +Wm→c(d) +Wm→g(d). Note
that Wc(d) is simply equal to UvdW(d), the total vdW
interactions between the atoms of the interacting NP cores.
In all three-particle PMF calculations, the dimer NPs were

held fixed with their cores contacting each other, and they were
not allowed to relax to their equilibrium separation distance
while the test NP was brought closer to the dimer along a
reaction coordinate. This allowed us to maintain a fixed
reference configuration of the NP-dimer, thereby ensuring that
all variations in the PMFs observed with respect to the different
parameters investigated here can be attributed solely to
variations in the graft conformations with respect to these
parameters and not to changes in the internal configuration of
the dimer itself. Also, allowing for variations in the dimer
configuration would amount to computing two-dimensional
PMFs, as a function of the separation distance between the
dimer NPs in addition to the position ξ′ of the test NP along
the reaction coordinate, which would increase the computa-
tional cost by an order of magnitude. As we demonstrate later,
grafted NPs that assemble into stable dimers in this study do so
with their cores almost touching each other. Hence, the PMFs
computed with relaxed dimers resemble quite closely those
computed using fixed dimers.

Molecular Dynamics Simulations. The MD simulations
were carried out in the canonical ensemble using a rectangular
simulation box employing periodic boundary conditions in all
three directions. The box dimensions were taken to be large
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enough to accommodate the polymer-grafted NPs in their most
spread-out configuration for the PMF calculation along each
reaction coordinate; this was achieved by employing a padding
of at least 2.5σ along the six directions. The NP-polymer system
was simulated in a meltlike state with a density of ρp ≡ nb/Vb =
0.82, where nb is the total number of grafted and matrix chain
segments and Vb is the volume available to these segments, i.e.,
volume of the simulation box minus the volume of the NP
cores. The equations of motion were integrated by using a
velocity-Verlet algorithm with a time step of Δt = 0.002. A
Nose−́Hoover thermostat32 with a time constant of τ = 1 was
used for maintaining the temperature at T = 1 (in units of ϵ/
kB), though it should be noted that our polymer chains are
largely athermal. All simulations were performed using the
LAMMPS package developed by Sandia National Laborato-
ries.33

The simulations were initialized by placing the grafted NPs
and the polymer chains in a simulation box 50−100 times
larger than the required dimensions to prevent overlap among
the chain segments and NP cores. The box was then gradually
compressed in each direction until the targeted box dimension
or polymer density was reached. Next, the NPs were assembled
into a configuration used for initiating the PMF calculations:
We slowly moved two of the NPs into the dimer configuration
with their cores touching each other, i.e., their centers are Dc
apart (Figures 1 and 2), and simultaneously moved the third
NP to a distance d = d0 ≡ 12 along the reaction coordinate
being probed, a separation distance large enough to prevent the
NP from interacting with the dimer. This initialization
procedure was carried out over a period of 0.2−0.5 million
time steps. Thereafter, the centers of the dimer NPs were held
fixed.
To compute the PMF profile, the center of the test NP was

moved in a stepwise manner along the reaction coordinate
toward the NP-dimer, first at steps of Δξ′ = 1 until a distance of
ξ′ = 4 was reached and then at steps of Δξ′ = 0.25 until contact.

During the mobile phase of each step, the NP center was
moved at a velocity of 0.000 01σ per time step until the target
Δξ′ was reached. The NP center was held fixed for a time
period of 0.6 million time steps during the stationary phase of
each step. The ensemble-averaged force ⟨F(ξ′)⟩ and the
ensemble-averaged components of the force experienced by the
test NP were computed from the last 0.5 million time steps of
this stationary phase. The test NP and the dimer NPs were
allowed to rotate throughout the simulations. The simulations
along each reaction coordinate were repeated four times to
improve accuracy and facilitate the calculation of error bars. A
similar procedure was used for calculating the two-particle
PMFs. The NP centers were fixed or moved using “hard”
restraints implemented through the “fix move” command in
LAMMPS; particles restrained in this manner are no longer
influenced by forces from adjacent particles or from the
thermostat.
Since the atomic lattice comprising the cores of the test and

dimer NPs and their centers are also held fixed using hard
restraints in each MD simulation at fixed distance ξ′, the net
vdW interaction energy UvdW(ξ′), or vdW force FvdW(ξ′),
between the cores remains fixed during each such simulation.
This feature allows for significant computational savings
because the vdW portion of the PMF Wc(d) ≡ UvdW(d) can
be calculated separately just once before or after the simulation
via eq 3; Wc(d) can then be added back onto the portion of
PMF Wp(d) arising from polymer-mediated forces that
fluctuate during the simulations at fixed ξ′ to yield the overall
PMF W(d). Furthermore, since the computed UvdW(d) ∝ ϵc,
one can calculate it for the reference ϵc = 1 to yield a reference
UvdW

0 (d), which can then be used to obtain UvdW(d) for any
arbitrary value of ϵc via UvdW(d) = ϵc × UvdW(d). This allows us
to explore arbitrary strengths of core/core interaction without
actually performing simulations at each of those ϵc values.

Systems and Parameters Investigated. To explore how
NP interactions are affected by various attributes of the grafted

Table 1. Details of Simulation Systems Examined in This Study

system no.a Lg
b Lm

c Γg
d ng

e nm
f,h Vg,h

reference system
1i 20 40 0.4 45 916, 1011, 1080 47216, 52949, 56315

effect of polymer grafts
1 20 40 0.4 45 916, 1011, 1080 47216, 52949, 56315
2 10 40 0.4 45 418, 471, 520 21714, 24961, 27351
3 5 40 0.4 45 138, 156, 192 7507, 8772, 10528
4 20 40 0.2 23 938, 1044, 1112 47104, 52949, 56266
5 10 40 0.2 23 430, 486, 540 21763, 24888, 27522
6 5 40 0.2 23 142, 165, 200 7434, 8809, 10516
7 20 40 0.1 11 950, 1065, 1136 47104, 53095, 56559
8 10 40 0.1 11 436, 495, 548 21763, 24888, 27473
9 5 40 0.1 11 146, 171, 204 7482, 8882, 10492

effect of polymer matrix
1 20 40 0.4 45 916, 1011, 1080 47216, 52949, 56315
10 20 20 0.4 45 1832, 2022, 2160 47216, 52949, 56315
11 20 5 0.4 45 7328, 8088, 8640 47216, 52949, 56315
12 20 1 0.4 45 36640, 40440, 43200 47216, 52949, 56315
13 20 0 0.4 45 0, 0, 0 47216, 52949, 56315

aIndex identifying the simulation system from a total of 13 studied systems. bLength of grafted chains. cLength of matrix chains. dGrafting density.
eNumber of grafted chains per NP. fNumber of matrix chains in simulation box. gVolume of simulation box. hValues correspond to simulations used
for computing PMFs along 2- and 3-particle (x0°, x90°) reaction coordinates; values used for computing PMFs along x90°′ are identical to those along
x90°.

iFor this reference system we computed the PMF along an additional reaction coordinate (x45°) for which we employed nm = 1119 and V =
58 189.
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NPs and the polymer matrix, we computed the PMFs for a
range of NP−polymer systems listed in Table 1. To keep the
number of systems investigated to a manageable amount, the
NP core diameter was fixed at Dc = 6 and the interactions
mediated by the grafts and matrix chains were fixed according
to eqs 1−4. The former ensures that the NPs are much larger
than the polymer segments, consistent with most experimental
systems, and the latter ensures that the grafted and matrix
polymer are chemically identical and that they interact with
each other and with the NP cores via excluded volume
interactions. We explored the effect of four parameters
considered to affect the morphology of self-assembled NP
structures:22

• Matrix chain length. Four different values were examined:
Lm = 1, 5, 20, and 40 (note that value 1 corresponds to a
“monomeric” solvent), yielding chain radii of gyration of
Rg = 0.5, 1.12, 2.15, and 3.15. This allowed us to probe
four different NP-to-matrix size ratios Dc/2Rg = 0.95, 1.4,
2.7, and 6 without altering NP size. This size ratio is
known to affect the morphology of NP structures, with
larger values leading to higher-dimensional structures,
and is therefore also expected to affect NP/NP
interactions. We also examined the impact of complete
removal of matrix chains, that is polymer-grafted NPs
interacting in a vacuum.

• Graf t chain length. Three different chain lengths Lg = 5,
10, and 20 were examined, which together with variations
in the grafting density described below allow us to
explore a wide range of grafting regimes known to affect
the interactions between polymer-grafted NPs.

• Graf ting density. Three different values Γg = 0.1, 0.2, and
0.4 were examined. To characterize the conformation of
the grafts, we computed the dimensionless surface
coverage parameter Γg* ≡ ΓgRg*

2, where Rg* is the
unperturbed radius of gyration of the grafts (free chains
not grafted to NP surface).23 Our calculations indicate
that we explored conformations ranging from the
mushroom regime (Γg* = 0.1) to the dilute brush regime
(Γg* = 1.85).

• NP core/core interaction strength. This is dictated solely by
the magnitude of the energy parameter ϵc. As explained
earlier, we can explore potentially any arbitrary value of
ϵc for every combination of Lm, Lg, and Γg investigated
here (Table 1) without performing any additional
simulations. In general, we considered values of ϵc in
the range 0.5−3 that allowed us explore both stable and
unstable configurations of associated NP clusters.

In all systems studied here, the grafted and matrix polymer
chains are chemically identical and modeled using FENE bonds
and short-ranged, purely repulsive nonbonded interactions. In
this study, we refrained from exploring attractive nonbonded
interactions and also studying systems with chemically different
NP-grafts and matrix chains. Examining such effects would
entail significantly higher computational costs, not only due to
the slower conformational sampling of attractive systems via
MD simulations but also due to the introduction of additional
parameters in the system associated with graft−graft, graft−
matrix, and matrix−matrix interactions. It was recently shown
that replacing the repulsive nonbonded potential in the above
model with an attractive Lennard-Jones potential had negligible
effect on the structure and dynamics of polymer chains
simulated at meltlike densities and temperatures at least twice
as large as the glass transition temperature, Tg.

34 Thus, we do
not expect the introduction of uniformly attractive interactions
across grafted and matrix polymer chains to have any significant
effect on computed PMFs given that we performed our
simulations in the melt phase at T = ϵ/kB, much higher than Tg
(∼0.4ϵ/kB). However, differences in interactions among and
between grafts and matrix chains should affect the PMFs; for
instance, if the matrix−graft interactions were attractive while
the graft−graft and matrix−matrix interactions were repulsive,
then one would expect the grafted-NPs to exhibit less attraction
(or more repulsion) with each other as compared to systems
with chemically identical grafts and matrix chains.

■ RESULTS AND DISCUSSION

Anisotropy in NP Interactions. To determine if and how
the interactions between two polymer-grafted NPs become
anisotropic when a third NP is in close proximity to one of the
NPs, we computed using molecular dynamics (MD) simu-
lations the potential of mean force (PMF) between a test NP
and a NP-dimer along four distinct reaction coordinates
spanning the angular space around the dimer. Though we
computed such PMFs for a range of NP-polymer systems, we
present below results computed for one representative system
comprising of NPs grafted with polymer chains of length Lm =
40 at a grafting density of Γg = 0.4 surrounded by a polymer
matrix of chain length Lg = 20 (Table 1, system 1). As discussed
later, this system with long and dense NP-grafts displays strong
anisotropic interactions, making it an ideal system for
showcasing this phenomenon and elucidating its physical basis.
Figures 3a and 3b show the core- and polymer-mediated

components Wc(d) and Wp(d) of the overall PMF computed
along the four chosen reaction coordinates. For comparison, we
also plot for the same system the two components of the two-

Figure 3. (a, b) Core and polymer-mediated components of the overall PMF computed along the two- and three-particle reaction coordinates for
the representative NP−polymer system with Lg = 20, Γg = 0.4, and Lm = 40. (a) Core-mediated component normalized by interatomic energy
parameter ϵc. Inset shows close-up of the profiles at small d. (b) Polymer-mediated component. (c) Three-body contribution to the overall PMF.
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particle PMF. The core-mediated component Wc(d) scales
linearly with the LJ energy parameter ϵc of the NP-core atoms
and is thus plotted in units of ϵc (Figure 3a). As expected, this
component is always attractive for distances d > 0 where all
core atoms interacting across the test and dimer NPs are
separated by a distance greater than σc. At smaller distances d <
0, some of these atoms begin to overlap and Wc rises and
becomes repulsive. All Wc(d) exhibit a minimum close to
contact, at roughly d = 0.024σ, which is consistent with the
notion that the NP cores can further lower their vdW energy by
getting closer than d = (21/6 − 1)σc ≡ 0.043σ (location of the
energy minimum for the interaction between the closest pair of
atoms on different cores directly facing each other) to increase
favorable interactions between the remaining atoms of the
interacting cores. The three-particle Wc(d) profiles along all
reaction coordinates except x90°′ are almost identical to the
profile obtained for the two-particle configuration. The reason
is that the LJ interaction between the NP-core atoms is short-
ranged, and none of these reaction coordinates allow the test
NP to simultaneously contact both NPs of the dimer. Each of
these profiles exhibits an attractive well whose depth scales as
≈21ϵc. The Wc(d) profile along x90°′ is exactly twice in
magnitude to that of the two-particle PMF given that the test
NP now feels exactly the same attraction from both NPs of the
dimer, which also implies that the three-body contribution
ΔW3 is exactly zero, as expected for rigid cores. Also as
expected, the three-body contribution to the Wc(d) for the
remaining three profiles is zero as well.
The polymer-mediated PMF components Wp(d), on the

other hand, are all repulsive and decrease much slower than
Wc(d) with increasing separation distance d (Figure 3b). By d
∼ 7−8, the polymer grafts of the interacting NPs are out of
reach of each other and Wp approaches zero. Importantly, the
Wp(d) profiles for the three-particle PMFs are substantially
more repulsive than that of the two-particle PMF. More
importantly, the polymer-mediated repulsion displays large
variation across the four reaction coordinates. In particular, the
degree of repulsion increases in the order x0° < x45° < x90° < x90°′ .
Thus, while Wc(d) is largely independent of the orientation of
the test NP with respect to the NP-dimer, except for the sharp
enhancement close to the perpendicular axis of the dimer,
Wp(d) shows a more uniform increase with the orientation
angle away from the poles of the NP-dimer.
In Figure 3c, we have plotted the three-body contribution

ΔW3 to the overall PMF, which arises completely from
polymer-mediated interactions, as the core-mediated PMF does
not have any three-body contribution. We find that ΔW3 is
substantial and contributes 30−40% of the overall polymer-
mediated repulsion (Wp) at near-contact d ≈ 0, and as
expected, this contribution becomes smaller with further
distance. Furthermore, ΔW3 increases in the order x0° < x45°
< x90° < x90°′ with respect to the four reaction coordinates; i.e.,
the three-body contribution becomes larger as the test NP
moves from the pole of the dimer (θ = 0) to the contact point
of the two dimer NPs (θ ≈ 4π/3; see Figure 1a).
Figure 4 shows the overall three-particle PMF W(d) for two

representative values of the energy parameter (ϵc = 3 and 7)
depicting intermediate and strong core−core attraction. Note
that for much smaller or much larger values of ϵc, W(d)
converge to Wp(d) and Wc(d), respectively. Compared to the
two components, the overall PMFs exhibit a more complex
dependence with distance and reaction coordinate. First, for
sufficiently strong core/core attraction, the overall PMFs

exhibit an energy barrier at short distances, which separates
the stable (or metastable) bound state of the test NP from its
dispersed state. The height of this energy barrier depends on
the strength of the core−core attraction. Second, the overall
PMFs no longer necessarily exhibit monotonic variations in the
strength of attraction (or repulsion) with orientation as
exhibited by Wp(d) and Wc(d). For example, the most stable
bound state of the test NP occurs along the x90°′ coordinate
when ϵc = 7, whereas it occurs along x0° when ϵc = 3. Indeed, it
is such variations in the relative stability of the different bound
states of NPs that leads to the rich and complex phase behavior
exhibited by polymer-grafted NPs, as discussed in more detail
further below. Interestingly, all PMFs W(d) that exhibit an
energy minimum do so at a distance close to the location of the
minimum exhibited by the core-mediated PMF Wc(d). This
observation is not surprising given the sharp, shorter-ranged
decay of the vdW core/core attraction as compared to the
flatter, longer-ranged decay of polymer-mediated repulsion,
which causes the cores to position themselves close to each
other to take advantage of the strong vdW attraction without
sacrificing much steric repulsion.
The overall PMFs also importantly reveal that the dimer NPs

prefer to assemble with their cores almost touching each other
(d ≈ 0.024σ), very similar to the contact configuration (d = 0)
we used for computing three-particle PMFs. Given that this
difference in the dimer configuration is much smaller than even
the size of a single polymer segment (σ), we expect the three-
particle PMFs computed here to closely approximate the “true”
three-particle PMFs obtained from calculations in which the
dimers are allowed to relax. To confirm this, we conducted
additional simulations to compute the three-particle Wp(d)
with dimer NPs separated by 0.024σ. Our results plotted in
Figure S1 showed that the PMFs are indeed very close to each
other.

Monomer Density Distribution. It was previously
proposed17,18,22 that the anisotropic assembly of spherical
grafted NPs could putatively arise from the displacement of
polymer grafts from in between the interacting NPs, potentially
leading to anisotropic distribution of polymer chains around
the NPs. To investigate if the observed anisotropy in the overall
polymer-mediated repulsion Wp(d) and in its three-body
contribution ΔW3(d) (Figure 3b,c) is related to any such
changes in polymer density, we computed the position-
dependent segmental density around a NP-dimer, defined
here as the number of polymer chain segments (beads) per unit
volume. For this purpose, we carried out separate MD
simulations of the NP-dimer in the same polymer matrix, but
without the test NP, and computed three kinds of densities: the
overall segmental density ρg+m(x,r) (Figure 5a) arising from

Figure 4. Overall PMFs computed along the two- and three-particle
reaction coordinates for the representative NP−polymer system with
Lg = 20, Γg = 0.4, and Lm = 40. The PMFs have been computed for (a)
ϵc = 3 and (b) ϵc = 7. Insets show close-ups at small d. Figure legends
same as in Figure 3.
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both grafted and matrix chains, the graf t segmental density
ρg(x,r) (Figure 5b) arising from grafted chains alone, and the
matrix segmental density ρm(x,r) (Figure 5c) arising from
matrix chains alone, each of which were computed as a function
of the longitudinal (x) and radial coordinate (r) relative to the
NP-dimer. To more directly relate these densities to the
computed Wp(d) and ΔW3(d), we also obtained 1D segmental
density profiles ρg+m(r′) (Figure 5d), ρg(r′) (Figure 5e), and
ρm(r′) (Figure 5f) as a function of the radial distance r′ to the
center of the dimer NP(s) along the reaction coordinates
introduced earlier. Because Wp (and ΔW3) and the density
profile along x45° are only marginally different from that along
x0°, we present only the density profiles along the three reaction
coordinates x0°, x90°, and x90°′ . For comparison, we also
computed the density profile around a single NP as a function
of radial distance r′ from its center, as computed from a
separate MD simulation of an isolated NP in a polymer matrix.
The overall segmental density shows enhancement and

oscillations close to the surface of the dimer (Figure 5a) that
are more apparent in the ρg+m(r′) profiles (Figure 5d). This
behavior is caused by a combination of two effects: the
tethering of the terminal graft segment to the NP core and the
layering of particles (segments) with excluded volume next to
an impenetrable wall (NP cores). Sufficiently far from the
dimer surface (>3σ), the densities asymptote to the bulk
density. More importantly, we observe minimal variations in
ρg+m(x,r) around the two dimer NPs with respect to the angular
coordinate. In particular, ρg+m(r′) profiles along the three
reaction coordinates x0°, x90°, and x90°′ all remain similar to the
density profile obtained for the isolated NP. These results
indicate that the observed anisotropy in polymer-mediated
repulsion between NPs might not arise from any enhancement
in the overall segmental density near the contact region of the
dimer.
The segmental density associated with grafts only, in

contrast, displays strong anisotropy, as noted from the angle
dependence of ρg(x,r) (Figure 5b) or from differences in ρg(r′)
across the three reaction coordinates (Figure 5e). In particular,
the region around the dimer that displays high to moderate

density (ρg ≳ 0.4), as depicted by the green−cyan halo in
Figure 5b, extends farther into the matrix along the
perpendicular than the longitudinal coordinate. The ρg(r′)
profiles show that the density rises monotonically from the
dimer poles to the contact region, i.e., in the order x0° < x90° <
x90°′ (Figure 5e). These results suggest that when two NPs
come into contact, as in the case of the dimer, their intervening
grafts get pushed outward into the region immediately
surrounding the contact point, causing a strong enhancement
in the graft segmental density along the perpendicular axis
passing through the contact point. The displaced grafts
encroach on their neighboring grafts, causing them to extend
outward and sideways, triggering a “domino effect” that
propagates outward from the contact point to the dimer
poles. That the density along x0° is only slightly higher than that
for a single NP (Figure 5e) indicates that the propagation
eventually subsides, with the grafts at either of the two dimer
poles remaining mostly unaffected by the presence of the other
dimer NP. We also observe that the ρg(r′) profiles along the
three reaction coordinates increase in the same sequence as the
three-particle Wp(d) profiles and that the ρg(r′) profile along
x0° is only slightly higher than its two-particle counterpart, also
similar to Wp(d) (see Figure 3b). This close analogy between
Wp(d) and ρg(r′) suggests that the anisotropy in polymer-
mediated PMFs may be caused by the anisotropy in the graft
segmental density, thereby providing direct support for the
hypothesis that the anisotropic interactions between NPs could
indeed arise from the conformational rearrangement of grafted
chains at the contact region.
Lastly, the segmental density arising from the matrix chains

shows the opposite trends compared to those exhibited by the
density arising from the grafts. In this case, ρm(x,r) gets
increasingly depleted as one gets closer to the dimer surface,
evidently due to increased exclusion by the polymer grafts.
Also, the depletion of matrix chains is most severe along x90°′
and gets weaker as one rotates toward the dimer axis, the x0°
coordinate. As discussed below, this anisotropy in the depletion
of matrix chains around the dimer will lead to an anisotropy in
the depletion forces between test NP and the dimer.

Figure 5. 2D contour maps of (a) overall segmental density ρg+m(x,r), (b) graft segmental density ρg(x,r), and (c) matrix segmental density ρm(x,r)
surrounding the NP-dimer. Color bars denote the density magnitude in units of segments/σ3. (d) Overall segmental density ρg+m(r′), (e) graft
segmental density ρg(r′), and (f) matrix segmental density ρg(r′) profiles along the three reaction coordinates labeled in (a) plotted as a function of
radial distance r′ from the center of the dimer NP. The “reference” density profile around an isolated NP as a function of radial distance from its
center is shown in blue.
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Steric versus Depletion Interactions. Polymer-mediated
interactions between grafted NPs in a polymeric matrix arise
from a combination of steric repulsion due to compression of
the grafted chains and depletion attraction due to osmotic
pressure of the matrix chains. To evaluate the role of steric and
depletion forces in producing the anisotropic polymer-
mediated repulsion between NPs, we dissected Wp(d) into
components arising from the interactions between (1) NP-
dimer grafts and test-NP grafts, Wg→g(d); (2) dimer cores and
test-NP grafts, Wc→g(d); (3) dimer grafts and test-NP core
Wg→c(d); (4) polymer matrix and test-NP grafts Wm→g(d); and
(5) polymer matrix and test-NP core Wm→c(d). The first three
components involving the polymer grafts of the test or dimer
NPs constitute “steric” interactions, while the last two
components arising from the polymer matrix constitute
“depletion” interactions.
We begin by examining how these individual components

vary with respect to the reaction coordinate. Incidentally, the
computed Wm→c(d) were substantially smaller than Wm→g(d)
and had a large statistical uncertainty, which made it difficult to
glean any statistically significant trends. To this end, we
combined both these matrix-centered terms into a single term
that we denote by Wm→NP(d) corresponding to the net
depletion force acting on the entire test NP. Figure 6 shows the
four components Wg→g(d), Wc→g(d), Wg→c(d), and Wm→NP(d)
corresponding to the two-particle PMF and the three-particle
PMFs along x0°, x90°, and x90°′ . The insets provide the three-
body contributions ΔW3,g→g(d), ΔW3,g→c(d), ΔW3,c→g(d), and
ΔW3,m→NP(d) for each of these four interactions along x0°, x90°,
and x90°′ .
The PMF component Wg→g(d) arising from graft−graft

interactions (Figure 6a) is found to be extremely repulsive,
approaching 1000s of kBT at contact (d = 0). Decomposing
Wg→g(d) further into its energetic and entropic contributions
using an approach described elsewhere31 (Figure S2) reveals
that most of this repulsion arises from the huge entropic loss
incurred by the grafts that get increasingly squeezed in between
the NP cores as they approach each other. Furthermore, the
repulsion is stronger for the three-particle configurations and
increases in the order x0°′ < x90° < x90°′ , with the former
approaching the two-particle Wg→g. Clearly, the strong

enhancement in graft segmental density along x90°′ (Figure
5b,e) is responsible for the strong graft−graft repulsion along
this reaction coordinate. The smaller enhancements along x90°
and x0° lead to concomitantly smaller degrees of repulsion
along those reaction coordinates. Interestingly, the three-body
contributions to graft−graft repulsion are all negative
(attractive), suggesting that the cumulative graft−graft
repulsion arising from the two dimer NPs in isolation is
stronger than that arising from the dimer. This result is likely
related to the cumulative graft segmental density arising from
two isolated dimer NPs being much higher than that from the
dimer (see Figure 5e), which, despite the anticipated stronger-
than-linear dependence of steric repulsion with graft segmental
density, leads to stronger graft/graft repulsion. In addition, the
three-body contributions are found to become increasingly
negative in the order x0°′ , x90°, and x90°′ .
The two components Wg→c(d) and Wc→g(d) arising from

interactions between NP grafts and cores are also purely
repulsive, but more than an order of magnitude weaker than
Wg→g(d) due to the strong shielding of NP cores by their grafts
(Figures 6b,c). Similar to Wg→g(d), the Wg→c(d) repulsion also
increases in the order x0° < x90° < x90°′ with the repulsion along
x0° approaching that in the two-particle configuration. This
trend is expected given that the graft segmental density around
the dimer NPs also increases in the same sequence, leading to
more interactions between the dimer grafts and the test NP
core along the two perpendicular directions as compared to the
longitudinal direction. However, Wc→g(d) exhibits a somewhat
different trend in that the repulsion along x0° is weaker than
that for the two-particle configuration and becomes even
weaker along x90°. The reason is that the increasing graft
segmental density along x0° and then x90° shields the dimer NP
core from interacting with the test NP grafts. Interestingly, the
repulsion rises up again along x90°′ because both dimer cores are
now able to interact with the grafts of the test-NP. The three-
body contributions to Wg→c(d) are all positive. The positive
contribution arises from the enforced interactions of polymer
grafts from the dimer with the surface of the test NP core due
to their inability to escape from the tight confinement in
between the test and dimer NPs. Comparatively, polymer grafts
from isolated dimer NPs have much more freedom to get

Figure 6. Breakdown of the net polymer-mediated repulsion Wp into its four components: (a) Wg→g, (b) Wg→c, (c) Wc→g, and (d) Wm→NP. Each
component is plotted as a function of position d along the two- and three-particle reaction coordinates. The insets provide the three-body
contributions for each of these components.
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displaced. In contrast, the three-body contributions to Wc→g(d)
are all negative, which is likely due to the increased cumulative
ability of test NP grafts to interact with the surface of the dimer
NPs when isolated as compared to the dimer that excludes a
large fraction of the dimer NPs from interacting with the grafts.
As usual, the magnitude of the three-body terms for both these
interactions increase in the order x0° < x90° < x90°′ .
The last component Wm→NP(d) due to depletion interactions

is strongly attractive (Figure 6d). The main source of this
attraction is the difference in the osmotic pressure that develops
across the two halves of the test NP (facing toward and away
from the dimer) due to exclusion of matrix chains from in
between the test NP and the dimer. This component is so
strong that it almost counterbalances the graft−graft repulsion.
In addition, the magnitude of depletion attraction increases in
the order x0° < x90° < x90°′ with the former approaching the two-
particle Wm→NP(d). This trend is consistent with that of the
graft segmental density in the region in between the test and
dimer NPs (Figure 5b,d), which rises in the same order with
respect to the reaction coordinates, leading to increasing
exclusion of the matrix chains from this region, and thereby
higher depletion attraction. The three-body contributions to
depletion attraction are all positive. This can be explained in
terms of the overlap between the excluded volumes of the test
NP and NP-dimer being smaller than the sum of the overlaps
between the excluded volumes of the test NP and the dimer
NPs individually. The magnitude of three-body contributions
again increase in the order x0°′ , x90°, and x90°′ .
The rise in polymer-mediated repulsion Wp(d) with

increased tilting of the reaction coordinate from the dimer
longitudinal axis may now be explained in terms of a
competition between the net steric repulsion Wster ≡ Wg→g +
Wg→c + Wc→g and depletion attraction Wdepl ≡ Wm→NP. Figure
7a compares the net steric repulsion against depletion attraction
for the two- and three-particle configuration. While both
interactions become stronger with increased tilting of the
reaction coordinate, as explained above in terms of the gradient
in the graft segmental density from dimer contact point to
poles, the increase in steric repulsion always exceeds that in
depletion attraction, causing an increased net repulsion with
increased tilting of the reaction coordinate. A possible
explanation for this observation is provided further below.
To further evaluate the contribution of the three components

of steric repulsion Wg→g, Wg→c, and Wc→g to the increase in
overall repulsion with tilting of the reaction coordinate, we
calculated the difference ΔWi|j ≡ Wi(0)|3‑particle,j − Wi(0)|2‑particle
in the value of the four PMF components i ≡ g → g, g → c, c
→ g, and m → NP between the three- and two-particle
configurations. These differences were calculated for each of the
three reaction coordinates j ≡ x0°, x90°, and x90°′ at the contact
distance d = 0, where the repulsion Wp(d) is the strongest. This
analysis, presented in Figure 7b, reveals that the stronger
repulsion Wp(d) along x0° (compared to the two-particle
scenario) (Figure 3b) occurs primarily due to the increase in
the steric repulsion between grafts (Figure 7b, top panel)
overriding the corresponding increase in depletion attraction.
The corresponding changes in the remaining two compo-
nentsgraft-to-core and core-to-graft repulsionare smaller
and in opposite directions and effectively cancel each other out.
However, this is not the case for repulsion along x90°, where the
increase in graft-to-core repulsion is larger in magnitude than
the decrease in the core-to-graft repulsion (middle panel). The
residual repulsion from core−graft interactions, combined with

the stronger graft−graft repulsion versus depletion attraction, as
in the case of x0°, leads to even stronger repulsion along x90° as
compared to x0° (Figure 3b). The situation is entirely different
for the repulsion along x90°′ . Here, the increase in graft-to-graft
repulsion is more than counterbalanced by the depletion
attraction and the core-to-graft repulsion now increases instead
of decreasing as in the case of x0° and x90° (bottom panel).
Moreover, the core-to-graft and graft-to-core repulsion are both
fairly strong and become the primary contributors to the very
strong repulsion observed along x90°′ .

Effects of Polymer Grafts and Surrounding Matrix. To
gain further insight into the influence of polymer grafting on
the anisotropic interactions between the NPs, we extended our
study to additional NP−polymer systems differing in the
grafting density and/or graft length. Specifically, we examined
nine different systems (Table 1, systems 1−9), resulting from
combining three different grafting densities (Γg = 0.1, 0.2, and
0.4) and three different graft lengths (Lg = 5, 10, and 20), that
includes the representative system with Γg = 0.4 and Lg = 20
discussed so far. Figure 8 compares the polymer-mediated
repulsionWp(d) computed for these systems along x0°, x90°, and
x90°′ . We find that the repulsion is very strong and differs
significantly between the three reaction coordinates for large
values of Γg and Lg. As these grafting parameters become
smaller, the repulsion weakens and the Wp(d) profiles for the
three reaction coordinates become increasingly similar to each

Figure 7. (a) Comparison of the net steric repulsion and depletion
attraction experienced by the test NP along the two- and three-particle
reaction coordinates. The two components nearly cancel each other,
and the resulting PMF W(d) = Wster(d) + Wdepl(d) for the different
reaction coordinates are shown in Figure 3b. (b) Bar chart of the
differences ΔWi|j ≡ Wi(0)|3‑particle,j − Wi(0)|2‑particle in the values
(specified above each bar) of the four PMF components i ≡ g → g, m
→ NP, g → c, and c → g between the three- and two-particle
configurations, calculated for each of the reaction coordinates j ≡ x0°,
x90°, and x90°′ at contact (d = 0). Negative values are marked with an
asterisk and their bars are flipped towards positive side for easier
comparison with positive values.
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other. In other words, the polymer-mediated repulsion is
strongly anisotropic for long grafts and high grafting densities
and becomes more isotropic as the grafts become shorter and
more sparsely grafted. To further characterize this anisotropy as
a function of graft length and grafting density, we computed the
three-body contributions ΔW3(d) for four of these NP−
polymer systems differing in graft length and grafting density.
Our results plotted in Figure 9 indicate that the interactions
become increasingly anisotropic with increasing graft length
and grafting density. In fact, for the lowest grafting density
studied here (Γg = 0.1), the three-body contributions are
negligible, even for relatively long grafts (Figures 9c,d).
The observed reduction in anisotropy with decreasing graft

length and grafting density is easily explained from the graft

segmental density maps ρg(x,r) (Figure 8 insets): When either
of the two grafting parameters is reduced, the high-density
region depicted by the yellow−cyan halo around the NP cores
changes from an anisotropic elliptical shape to a more isotropic
shape that closely “hugs” the dimer surface. The strong
correlation between the density contours and the PMFs
reemphasizes the strong connection between anisotropy and
graft segmental density. As expected, the overall segmental
density (Figure S3) remains almost identical across all systems,
again confirming the little-to-no correlation between anisotropy
and overall segmental density. Dissecting Wp(d) into steric and
depletion contributions (Figure S4) reveals that both
components are substantial for systems with high grafting
density and long grafts and that the dominance of steric
repulsion over depletion attraction results in strong polymer-
mediated repulsion and large differences in the repulsion over
the three reaction coordinates. As the grafting density and/or
graft lengths become smaller, both components become
weaker, leading to weaker overall repulsion and smaller
differences in repulsion between the different reaction
coordinates.
Our calculations have shown that the matrix chains produce

strong depletion attraction between the NPs that negates much
of the steric repulsion between them (Figure 7a). To further
investigate the impact of the surrounding medium on the
polymer-mediated repulsion between NPs, we examined the
effects of replacing the matrix chains, currently of length Lm =
40, with shorter chains of length Lm = 20, 5, and 1, the last of
which represents a “monomeric” solvent (Table 1, systems 10−
12) ; We also examined the effect of removing the matrix
altogether by considering NP interactions in vacuum (system
13). Figure 10 presents the Wp(d) profiles computed for these
new systems along x0°, x90°, and x90°′ . Comparing against the

Figure 8. Polymer-mediated component of the PMF computed along the two- and three-particle reaction coordinates for nine distinct NP−polymer
systems differing in NP graft length (Lg = 5, 10, 20) or grafting density (Γg = 0.1, 0.2, 0.4). Insets show the corresponding 2D contour maps of graft
segmental density surrounding an isolated dimer (scale bar = 6σ).

Figure 9. Three-body contribution ΔW3(d) for four different NP−
polymer systems differing in graft length and grafting density as
specified in the figures along x0°, x90°, and x90°′ .
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profiles obtained for the reference system (Figure 3b), we find
that decreasing the matrix chain length to Lm = 20 (Figure 10a)
has no measurable effect on Wp(d), and a further decrease to
Lm = 5 leads to some (∼40%) increase in repulsion (Figure
10b). However, dissolving the bonds between the matrix chain
segments (Lm = 1) leads to a significant increase in repulsion,
roughly twice in magnitude along each reaction coordinate
(Figure 10c). The removal of matrix chains altogether leads to
further increase in the strength of repulsion (Figure 10d). We
note that each increase in the strength of repulsion with chain
shortening is also accompanied by an outward extension in the
range of repulsion. Also plotted in Figure 10 are the three-body
contributions to the PMF, which are observed to decrease with
the decreasing matrix chain length (Figure 10e−g) and,
somewhat interestingly, become quite small when the matrix
chains are removed altogether (Figure 10h). Thus, the presence
of a matrix surrounding the polymer-grafted NPs seems to play
an important role in enhancing three-body interactions
between them.
To investigate the origin of this increase in the strength and

range of repulsion with reduction in the length of the matrix
chains and their subsequent removal, we turn to the graft
segmental density maps (Figure 10 insets) and the steric and
depletion components of Wp(d) (Figure S5). The density maps
clearly show that the NP grafts extend outward with the
shortening and subsequent removal of matrix chains. This
observation is consistent with the fact that the shorter the
matrix chains, the weaker the depletion force (osmotic
pressure) they exert (Figure S5) and thereby the farther the
grafts extend into the matrix, which explains the observed
increase in the range of repulsion with decreasing length and
removal of matrix chains. Such extension of grafts also leads to
a sparser layer of grafted polymer segments around the dimer
NPs (Figure 10 insets), allowing easier interpenetration
between the grafts of the test and dimer NPs. Thus, the
diminishing depletion attraction with shortening and removal
of matrix chains also results in smaller steric repulsion between
grafts. However, this decrease in steric repulsion is smaller in
magnitude than the corresponding decrease in depletion forces
(Figure S5), which causes increase in the overall polymer-
mediated repulsion with reduction in the length of the matrix
chains or their removal. Though we did not study systems with
matrix chains longer than 40 due to computational reasons, we
expect their PMFs to look similar to those of Lm = 40 given that
Wp(d) and ρg(x,r) seem to have converged at this chain length,

indicating that the grafted chains are close to their maximum
compression. The above results underscore the importance of
the surrounding medium when examining interactions between
NPs and suggest that the effects of the surrounding matrix
cannot be neglected, even when the matrix is neutral to the
grafts, as is the case in this study.

Additional Insights into Depletion Interactions. The
polymer-grafted NPs examined here exhibit unusually strong
depletion attraction, even in a monomeric matrix where the
strength of the depletion interactions is ∼1300 kBT (Figure S5).
To understand the origin of such strong interactions, we turn to
the classical model of Asakura and Oosawa (AO model)35,36

that provides an analytical expression for the strength of
depletion interactions between two spherical particles in a
solution of macromolecules (depletant). The model treats both
components as hard spheres and uses an ideal-gas approx-
imation to estimate the translational entropy that the
macromolecules gain from the additional volume that frees
up due to the overlap between the macromolecule-excluded
volumes of two particles when they come into contact.
Specifically, the free energy change ΔGd resulting from the
contact of two particles of diameter Dp in a surrounding
solution of volume V containing N macromolecules of diameter
Dm is given by36

π
Δ = −

+
G

N k TD D D

V

(3 2 )

12d
B m

2
p m

(7)

where it was further assumed that V is much greater than the
excluded volume overlap between the particles, applicable to
most situations where the particles are present at low volume
fraction.
We first investigated if the AO model could explain the large

depletion attraction exhibited by our polymer-grafted NPs in a
monomeric matrix. However, a straightforward application was
not possible because eq 7 was derived for hard particles with an
excluded volume defined by a sphere of diameter (Dp + Dm),
while our NPs have a soft shell of polymer grafts around a hard
core. If one considers the average height of the polymer grafts
to be hg and the diameter of the NP core to be Dc, the true
excluded volume of the NP can be approximated as a sphere of
diameter (Dc + 2hg + 1), where 1 is the diameter of the
depletant (monomeric segments) in reduced units. Thus, the
diameter of the depletants Dm in eq 7 needs to be replaced by
an “effective” diameter given by (2hg + 1). By substituing hg ≈
3.0 computed from simulations, Dp = Dc = 6, and N/V ≡ ρp =

Figure 10. Polymer-mediated component of the PMF computed along the two- and three-particle reaction coordinates for NPs interacting across a
polymer matrix of chain length (a) Lm = 20, (b) Lm = 5, (c) Lm = 1, and (d) Lm = 0 (vacuum), and their corresponding three-body contributions
(e−h). Insets show the corresponding 2D contour maps of graft segmental density surrounding an isolated dimer (scale bar = 6σ).
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0.82, we obtained ΔGd ≈ −340 kBT, which is of similar scale as
the depletion attraction Wm→NP(0) computed from simulations.
As reference, the AO depletion interactions for bare NPs of the
same size in the same medium yielded only ΔGd ≈ −4 kBT.
Thus, the depletion interactions in polymer-grafted NPs can
indeed be very large, primarily because they can exhibit an
unusually large excluded volume overlap with other NPs due to
their soft polymer grafts.
Next, we applied the model to polymer-grafted NPs in a

polymeric matrix of length Lm = 40, where an entire matrix chain
(depletant) was approximated as a hard sphere of diameter
equal to 2Rg, where Rg is the radius of gyration of the matrix
chains; the effective diameter of the depletant now becomes
equal to (2hg + 2Rg), and the depletant density N/V is given by
ρp/Lm. By computing Rg ≈ 3.0 from simulations, we obtained a
value of ΔG ≈ −25 kBT, which is almost 2 orders of magnitude
smaller than the value of ∼2500 kBT computed from
simulations. Thus, the AO model does a poor job of estimating
depletion interactions in polymer melts, as it neglects the gain
in the internal configurational entropy of the chains, which can
be substantial in melts. Nevertheless, to test the reasonableness
of this huge depletion attraction observed in our simulations,
we simulated the same system but containing bare NPs of
diameters equal to the effective diameter (Dc + 2hg) of the
polymer-grafted NPs and found that the depletion attraction is
indeed comparable to that computed for polymer-grafted NPs
(Figure S6).
It was noted earlier that the strength of the depletion

attraction always goes hand-in-hand with that of steric repulsion
and that the former is consistently weaker than the latter in all
the systems investigated here, including two-particle config-
urations (see, for example, Figure 7a). The first observation is
easily explained by recognizing that both types of forces
increase with the amount of overlap between the grafts, and
therefore if the steric repulsion were large due to a large overlap
between grafts, the depletion attraction will also be large, and
vice versa.
To explain the second observation, we consider the simpler

case of a two-particle system composed of the test and
reference NP (Figure 1c). In this system, the depletion force on
the test NP arises due to differences in the population of matrix
chains interacting with the inside and outside halves of the test
NP (facing toward and away from the reference NP); Similarly,
most of the steric force (>95% in Figure 6) on the test NP
arises from its interactions with the grafts of the reference NP,
which are clearly more populated on the inside half of the test
NP. The observed dominance of steric forces over depletion
forces could then be perceived to arise from the mismatch in
population of reference NP grafts over the two halves of the
test NP being larger than the corresponding mismatch in
population of matrix chains.37 To test this conjecture, we
computed the differences Δρg and Δρm in the average density
of polymer segments belonging to reference NP grafts and
matrix chains within cylindrical volumes of radius R and
thickness d touching the right and left poles of the test NP:

∫ ∫
ρ

π ρ ρ

π
Δ =

− + −r r x r D d x r x

R d

2 d [ ( , ) ( 2 , )] d
i

R d
i i0 0 c

2

(8)

where d is the surface-to-surface distance between the reference
and test NP whose centers are assumed to be located at
positions x = −Dc/2 and x = Dc/2 + d, and index i = g, m refers

to the reference NP grafts or the matrix chains. We obtained
Δρg = 0.33, 0.31, and 0.25 and Δρm = −0.22, − 0.23, and −0.20
for the representative system (system 1, Table 1) at increasing
separation d = 2, 4, and 6; for these calculations we employed R
= 6, roughly corresponding to the footprint of a polymer-
grafted NP (Figure 5). The positive Δρg indicates depletion of
reference NP grafts on the outside region of the test NP, and
the negative Δρm indicates depletion of matrix chains in the
region between the reference and test NP. The decreasing
magnitudes of Δρg and Δρm with increasing d indicates that the
matrix and graft segmental densities become more isotropic
around the test NP. More importantly, we find that the overall
density difference (Δρg + Δρm) is positive, suggesting a greater
imbalance in the segmental density of grafted chains compared
to matrix chains, explaining the slightly larger steric forces
compared to depletion forces in this system.

Stability of NP Clusters and Phase Diagram. Experi-
ments have shown that polymer-grafted NPs exhibit a rich
phase diagram in which they transition from a dispersed
morphology at sufficiently high grafting density and graft length
to 1D strings to 2D sheets to 3D close-packed structures with
decreasing grafting density and graft length. While it is not
possible to directly relate the computed two- and three-particle
PMFs to the stability of several of these higher-order structures
due to multibody effects, such PMFs can nevertheless provide
valuable information on the stabilities of small two- and three-
particle clusters (dimer and trimer) as a function of parameters
like grafting density and graft length. These clusters may be
conceived as precursors of the 1D, 2D, and 3D higher-order
structures. Note that each of the three-particle reaction
coordinates yields a distinct configuration of the trimer: linear,
L-shaped, and triangular configuration from x0°, x90°, or x90°′ ,
respectively. The “phase” diagram we seek therefore comprises
five distinct phases: dispersed, dimer, and the three types of
trimers.
We constructed such a phase diagram by f irst calculating the

free energy change associated with forming a dimer or a trimer
from isolated NPs. The free energy ΔGdim(d) of forming a
dimer with a surface-to-surface separation distance d is simply
given by the two-particle PMF computed earlier that we now
denote by W2(d):

Δ =G d W d( ) ( )dim 2 (9)

The free energy ΔGtri(d1,d2) of forming any one of the three
trimer configurations can be calculated as the sum of the free
energies of first forming a dimer, as a function of distance d1
between the dimer NPs, and then forming a trimer, as a
function of distance d2 between the third NP attaching onto the
dimer:

Δ = +G d d W d W d d( , ) ( ) ( ; )tri 1 2 2 1 3
2D

2 1 (10)

Here, W2(d1) is the two-particle PMF computed earlier and
W3

2D(d2;d1) is a 2D three-particle PMF that depends on both d1
and d2; Note that W3

2D(d2;d1) is dif ferent from the 1D three-
particle PMFs computed thus far, and now denoted by W3(d),
which consider interactions of a third NP with a dimer fixed at
the contact distance d1 = 0, that is, W3(d) ≡ W3

2D(d;0).
The next step involves determining the global minimum in

the computed ΔGdim and ΔGtri profiles that provides the
relative stability of a structure. If this minimum free energy
value is positive or if the entire profile is always positive, then
that structure is deemed unstable. The stability of a dimer can
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be easily obtained as it involves computation of a 1D free
energy profile, but determining the stability of the trimer phase
is extremely computationally demanding, as it involves
computation of a 2D three-particle PMF. To this end, we
made the following reasonable approximation:

Δ ≈ +

≡ +

G d d W d W d

W d W d

min{ ( , )} min{ ( )} min{ ( ; 0)}

min{ ( )} min{ ( )}
tri 1 2 2 1 3

2D
2

2 3 (11)

which allowed us to estimate the stability of the trimer clusters
using only the already-computed PMFs. Note that we have
assumed here that the minimum free energy of attaching the
third NP is minimally affected by the precise configuration of
the dimer as long as the dimer NPs are almost at touching
distance in their most favorable configuration. This assumption
is reasonable considering that (1) the most stable configuration
of dimers are indeed ones in which the NPs are separated by
small distances (d1 ≈ 0.024σ; see Figure 3a and earlier
discussion) and (2) the PMF computed for system in which the
dimer exhibits its most stable configuration (d1 ≈ 0.024σ) was
found to be very similar to the three-particle PMF computed
here with contacting dimer NPs (d1 = 0) (see Figure S1 and
earlier discussion). As explained earlier, the reason that our
grafted NPs assemble at such close distances has to do with the
short-ranged nature of vdW attraction between NPs as
compared to polymer-mediated repulsion (compare Figures
3a and 3b). Therefore, we envision that for systems in which
the vdW attraction is longer ranged, for instance when the size
of the NPs is much larger and the attraction scales as ∼1/d or if

the systems were so densely grafted that the NPs are unable to
displace the grafts to access the strong vdW attraction.
Figure 11 compares the formation free energy profiles of the

dimer and trimer phases for nine different combinations of graft
lengths and grafting densities with the core−core attraction
strength fixed at a value of ϵc = 1 roughly corresponding to that
of solid silicon. In particular, we compare ΔGdim(d) and
ΔGtri(d), where the latter corresponds to the variation in the
free energy of an NP trimer as a function of the distance
between a NP and a NP-dimer already assembled and fixed in
its most favorable configuration. We observe that the free
energy profiles of the dimer and all three trimers are positive for
(Lg, Γg) = (20, 0.4), (20, 0.2), (10, 0.4), and (5, 0.4). This
implies that the NPs prefer to remain dispersed for such
strongly grafted NPs, where the vdW attraction between the
NP cores is too weak to overcome the polymer-mediated
repulsion between the NPs. However, as the grafting density
and graft length are reduced, the polymer-mediated repulsion
becomes weaker, and the dimer and trimer phases begin to
exhibit negative free energies of formation. In particular, we find
that the linear trimer phase is the most stable phase at (Lg, Γg)
= (10, 0.2) while the triangular trimer phase becomes most
stable at (Lg, Γg) = (20, 0.1), (10, 0.1), (5, 0.2), and (5, 0.1). In
general, we find that the stability of the L-shaped trimer is
always intermediate to that of the linear and triangular trimers
and hence does not appear as the most stable phase under any
grafting condition. We also note the presence of large energy
barriers separating the associated and dispersed states. In cases
where the bound state is globally stable, the presence of such

Figure 11. Free energies of formation of the NP-dimer [ΔGdim(d)] and of the three different configurations of NP trimers [ΔGtri(d)] for nine
different kinds of polymer-grafted NPs in a polymer matrix of chain length Lm = 40. The NPs in all systems exhibit the same core−core attraction (ϵc
= 1), but differ in terms of their graft length (Lg = 5, 10, 20) or grafting density (Γg = 0.1, 0.2, 0.4).
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energy barriers could cause the NPs to get kinetically trapped in
the dispersed state, and thermal annealing of the polymer−NP
system might be required to help NPs to cross over the barrier
and bind to each other.
The above results on cluster stabilities along with those

obtained for weaker (ϵc = 0.5) and stronger core/core
attraction (ϵc = 3) are summarized in terms of phase diagrams
in Figure 12. The general features of these phase diagrams

resemble those observed experimentally,17 that is, the NPs
transition from isotropic structures of high dimensionality (3D
aggregates in experiments, triangular trimers here) to
anisotropic structures of decreasing dimensionality (2D sheets
to 1D strings in experiments, linear trimers to dimers here)
with increasing grafting density and graft length, eventually
yielding dispersed NPs (both here and in experiments) at
sufficiently strong grafting conditions. As expected, a weak
core−core attraction strength shifts the boundaries of the
phases inward to small grafting densities and graft lengths, and
vice versa for strong attraction.
Our phase diagrams also reveal a unique feature that is

missing in the experimental phase diagramthe presence of a
globally stable dimer phase (see Figure 12c). This phase appears
within a small window of parameter spacearguably at high
grafting densities, long grafts, and strong core/core attraction

according to our resultswhere the two-particle PMF W2
exhibits an attractive minimum while the three-particle PMF
W3 is purely repulsive due to the polymer redistribution effect
discussed earlier. Within this region of the parameter space, the
dimers are stable against dissociation into individual NPs and
also stable against growing into trimers.
Since a linear trimer is less stable than the dimer in this

region of the phase diagram, then we expect all n-particle linear
structures (1D strings) to be less stable than the dimer, as each
j-particle PMF Wj(j > 3) is at least as repulsive as W3. Now, it
may be argued that the free energies of formation of other more
compact higher-dimensional structures (such as tetragonally
arranged tetramers, octahedrally arranged hexamers, etc.) may
become lower than the formation free energy of the dimer.
However, for that to occur, the j-particle PMF associated with
the addition of an NP to a (j − 1)-particle cluster would have to
become strongly attractive, e.g., due to sudden jump in the vdW
attraction Wc from an increase in the number of NP contacts,
and more than counterbalance the strong polymer-mediated
repulsion Wp arising from each of these contacting NPs, which
is highly unlikely given that Wp increases stronger than linearly
with the number of contacts (due to positive many-body
contributions). Understandably, such compact higher-order
structures appear only under weak grafting conditions (when
the graft density/graft length are sufficiently small) in the
experimental phase diagram, which is clearly incompatible with
the strong grafting conditions under which the dimer phase is
stabilized. Thus, we believe that the dimer phase identified here
is also stable against forming higher-order structures. It would
be interesting to experimentally test the existence of such a
phase and to further investigate and map out its precise location
within the grafting parameter space. Such stable NP-dimers, as
well as other small clusters, could find applications in
plasmonics.10,38

Note that one cannot make a similar claim about the global
stability of any of the trimer configurations observed to be the
most stable phase in our phase diagram. The reason is that
though this phase has been determined to be averse to
dissociating into lower-order structures (individual NPs, or
dimer + isolated NP), it remains undetermined whether the
phase is also averse to growing into larger structures (e.g.,
tetramers). In fact, when the trimer phase is determined to be
stable, the three-particle PMF W3 must be favorable (possess a
minimum with negative free energy) according to eq 11. This
would then imply that the four-particle PMF W4 associated
with attaching a fourth NP to the trimer would also likely be
favorable, especially when the location of attachment is
sufficiently far from other noncontacting NPs of the trimer in
which case W4 would be almost as favorable as W3. The trimer
would thus merely represent an intermediate to a more stable
tetramer structure and so forth. Applying such an argument to a
linear trimer would suggest that the trimer will continue to
grow into a longer linear NP string as each NP addition to the
ends of the string serves to further stabilize it. Similarly, the L-
shaped and triangular trimer phases may be precursors of the
square and hexagonal sheets, though we do not expect each
subsequent addition of NP to yield the same free energy change
as the three-particle PMF.
Lastly, we comment that the free energies of formation of

clusters calculated from the PMFs ignore the loss in
translational entropy and the gain in rotational entropy that
NPs undergo upon assembly. The change in entropy associated

Figure 12. Phase diagrams along the graft length−grafting density
parameter space depicting the most favorable configuration adopted by
three NPs at different fixed values of the core−core attraction strength:
(a) ϵc = 0.5, (b) ϵc = 1, and (c) ϵc = 3.
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with the dimerization of two NPs may be roughly estimated
via39
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where ρN is the number density of NPs, h is Planck’s constant,
m is the mass of each NP, and I = mDc

2/2 is the moment of
inertia of the NP-dimer. Using typical sizes (5−100 nm),
densities (2−5 g/cm3), and loadings (2−5 vol %) of NPs, we
obtain ΔS in the range −9 to −18 kB. Thus, the entropy change
is small compared to the losses and gains in configurational
entropy of the grafts and matrix chains (1000s of kB according
to Figure 6 and Figure S2). Hence, we expect the qualitative
features of the phase diagram to be largely preserved even in
the absence of this free energy component. Moreover, the
translational entropy loss is expected to depend on the
concentration of NPs. Therefore, the “standard” free energies
of formation computed here do not depend on NP
concentration, which facilitates easier comparison of the relative
free energies of the structures as it does not require any
specification of NP concentration.

■ CONCLUSIONS

We have investigated the role of polymer-mediated interactions
between NPs in the formation of anisotropic structures from
spherically symmetric polymer-grafted NPs by computing the
overall PMF between a NP-dimer and a test NP along with its
three-body contribution as a function of its orientation relative
to the dimer. The rationale is that stable anisotropic phases like
1D strings and 2D sheets must emerge from an anisotropy in
the three-body polymer-mediated component of the PMF
because if that is not the case, the NPs would simply assemble
into hexagonal close-packed aggregates to maximize the
number of attractive contacts between the NPs or else remain
dispersed if the attraction is weak. Our calculations show that
the three-body, polymer-mediated component of the PMF is
indeed highly anisotropic, exhibiting the strongest repulsion
along the perpendicular axis passing through the center of the
dimer and the least repulsion along its longitudinal axis. Further
analysis reveals that this anisotropy, and the even stronger
anisotropy observed in the overall PMFs, is directly related to
the anisotropic distribution of graft segments near the surface
of the dimer. In particular, the polymer grafts in between the
dimer NPs get pushed outward from their contact point causing
strong enhancement in the graft segmental density in the
contact region in between the two NPs. The enhancement is
highest within this region and gradually decreases away from it,
reaching its lowest value at the dimer poles, similar to the
observed variation in polymer-mediated repulsion. By decom-
posing the polymer-mediated PMF into steric repulsion arising
from the grafted chains and depletion interactions arising from
the surrounding matrix, we find that the reduction in the
grafted polymer density from dimer contact region to its poles
leads to concomitant reduction in steric and depletion
interactions along the same direction. However, with the steric
repulsion consistently dominating depletion attraction, the net
effect is a reduction in polymer-mediated repulsion from the
contact region to the poles. This consistent dominance of steric
over depletion forces seems to arise from a greater mismatch in
the segmental density of grafted chains, as opposed to that of

matrix chains, across the inner and outer halves of the
interacting NPs. Interestingly, despite the strong variation in
the graft segmental density, the overall segmental density
remains independent of location around the dimer surface.
Probing further the role of the NP grafts and the surrounding

matrix, the anisotropy in both the overall and three-body
contribution of polymer-mediated interactions is found to
intensify with increasing graft length and grafting density. This
trend arises again due to the simultaneous rise in the steric
repulsion and depletion attraction, and the increasing
dominance of the former over the latter, with increasing graft
length and grafting density. The surrounding matrix has a very
different effect, where the anisotropy in the overall PMF is
found to diminish with increasing length of matrix chains. In
fact, NPs interacting in a monomeric matrix at the same density
as the polymer matrix exhibit much higher anisotropy, and
those interacting in a vacuum exhibit even higher anisotropy.
The strength of and anisotropy in the three-body component,
in contrast, is found to increase with increasing matrix chain
length. Our analysis shows that even though both depletion and
steric forces decrease rapidly with the monomerization and
subsequent removal of matrix chains, the steric forces decrease
less rapidly than the depletion forces, leading to increasing
anisotropy in polymer-mediated repulsion. Additional analysis
reveals that the unusually large depletion forces observed in
polymer-grafted NPs arises from the ability of their grafts to
overlap when they come into close contact, leading to unusually
large changes in the matrix-excluded volume.
Representative overall PMFs, obtained by adding an

attractive vdW core/core potential to the polymer-mediated
PMF, lead to complex behavior. While vdW attraction favors
the formation of triangular three-particle clusters and polymer-
mediated repulsion favors (least disfavors) linear clusters, the
overall PMF stipulates that all three cluster configurations
(triangular, L-shaped, or linear) may be stable depending on
the relative strengths of the two PMF components. The overall
PMFs also provide some basis for the experimentally observed
anisotropic phases given that the triangular, L-shaped, and
linear three-particle clusters may be conceived as precursors of
the 2D hexagonal, 2D square, and 1D string phases and that the
three cluster configurations were found to occupy qualitatively
similar regions of the parameter space as the three higher-order
anisotropic phases. Lastly, our cluster phase diagram predicts
the possibility of observing a stable NP-dimer phase within a
narrow window of parameter space where the two-particle PMF
is attractive and all three-particle PMFs are repulsive. The
existence of this novel phase with potential applications in
plasmonics remains to be tested.
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